当前位置:首页 > 数理化
拓扑学  英文版
拓扑学  英文版

拓扑学 英文版PDF电子书下载

数理化

  • 电子书积分:9 积分如何计算积分?
  • 作 者:(德)亚尼齐(JanichK.)著
  • 出 版 社:北京/西安:世界图书出版公司
  • 出版年份:2012
  • ISBN:7510040647
  • 页数:193 页
图书介绍:本书是一部本科生学习拓扑空间的基础教程。引导读者很好的学习拓扑中有关几何的东西什么是最重要的。本书的内容分为三大部分,线和面、矩阵空间和拓扑空间,这些都将是为更进一步学习打下良好的基础,在讲解所熟悉领域的同时,自然而然地透露书不少新的知识点。
《拓扑学 英文版》目录

Introduction 1

1.What is point-set topology about? 1

2.Origin and beginnings 2

CHAPTER Ⅰ Fundamental Concepts 5

1.Theconcept of a topological space 5

2.Metric spaces 7

3.Subspaces,disjoint unions and products 9

4.Bases and subbases 12

5.Continuous maps 12

6.Connectedness 14

7.The Hausdorff separation axiom 17

8.Compactness 18

CHAPTER Ⅱ Topological Vector Spaces 24

1.The notion of a topological vector space 24

2.Finite-dimensional vector spaces 25

3.Hilbert spaces 26

4.Banach spaces 26

5.Fréchet spaces 27

6.Locally convex topological vector spaces 28

7.A couple of examples 29

CHAPTER Ⅲ The Quotient Topology 31

1.The notion of a quotient space 31

2.Quotients and maps 32

3.Properties of quotient spaces 33

4.Examples:Homogeneous spaces 34

5.Examples:Orbit spaces 37

6.Examples:Collapsing a subspace to a point 39

7.Examples:Gluing topological spaces together 43

CHAPTER Ⅳ Completion of Metric Spaces 50

1.The completion of a metric space 50

2.Completion of a map 54

3.Completion of normed spaces 55

CHAPTER Ⅴ Homotopy 59

1.Homotopic maps 59

2.Homotopy equivalence 61

3.Examples 63

4.Categories 66

5.Functors 69

6.What is algebraic topology? 70

7.Homotopy-what for? 74

CHAPTER Ⅵ The Two Countability Axioms 78

1.First and second countability axioms 78

2.Infinite products 80

3.The role of the countability axioms 81

CHAPTER Ⅶ CW-Complexes 87

1.Simplicial complexes 87

2.Cell decompositions 93

3.The notion of a CW-complex 95

4.Subcomplexes 98

5.Cell attaching 99

6.Why CW-complexes are more flexible 100

7.Yes,but...? 102

CHAPTER Ⅷ Construction of Continuous Functions on Topological Spaces 106

1.The Urysohn lemma 106

2.The proof of the Urysohn lemma 111

3.The Tietze extension lemma 114

4.Partitions of unity and vector bundle sections 116

5.Paracompactness 123

CHAPTER Ⅸ Covering Spaces 127

1.Topological spaces over Ⅹ 127

2.The concept of a covering space 130

3.Path lifting 133

4.Introduction to the classification of covering spaces 137

5.Fundamental group and lifting behavior 141

6.The classification of covering spaces 144

7.Covering transformations and universal cover 149

8.The role of covering spaces in mathematics 156

CHAPTER Ⅹ The Theorem of Tychonoff 160

1.An unlikely theorem? 160

2.What is it good for? 162

3.The proof 167

LAST CHAPTER Set Theory(by Theodor Br?cker) 171

References 177

Table of Symbols 179

Index 183

返回顶部