高光谱图像处理技术 英文PDF电子书下载
- 电子书积分:12 积分如何计算积分?
- 作 者:王立国,赵春晖著
- 出 版 社:北京:国防工业出版社
- 出版年份:2015
- ISBN:9787118101683
- 页数:315 页
1 Basic Theory and Main Processing Techniques of Hyperspectral Remote Sensing 1
1.1 Basic Theory of Hyperspectral Remote Sensing 1
1.1.1 Theory of Remote Electromagnetic Wave 1
1.1.2 Interaction of Solar Radiation and Materials 2
1.1.3 Imaging Spectrometer and Spectral Imaging Modes 3
1.1.4 Imaging Characteristics of HSI 7
1.2 Classification Technique of HSI 8
1.2.1 Supervised Classifications and Unsupervised Classifications 8
1.2.2 Parameter Classifications and Nonparameter Classifications 11
1.2.3 Crisp Classifications and Fuzzy Classifications 13
1.2.4 Other Classification Methods 13
1.3 Endmember Extraction Technique of HSI 14
1.4 Spectral Unmixing Technique of HSI 17
1.4.1 Nonlinear Model 18
1.4.2 Linear Model 19
1.4.3 Multi-endmember Mode of Linear Model 23
1.5 Sub-pixel Mapping Technique of HSI 24
1.5.1 Spatial Correlation-Based Sub-pixel Mapping 26
1.5.2 Spatial Geostatistics-Based Sub-pixel Mapping 28
1.5.3 Neural Network-Based Sub-pixel Mapping 29
1.5.4 Pixel-Swapping Strategy-Based Sub-pixel Mapping 30
1.6 Super Resolution Technique of HSI 32
1.7 Anomaly Detection Technique of HSI 35
1.8 Dimensionality Reduction and Compression Technique for HSI 38
1.8.1 Dimensionality Reduction:Band Selection and Feature Extraction 38
1.8.2 Compression:Lossy Compression and Lossless Compression 42
References 44
2 Classification Technique for HSI 45
2.1 Typical Classification Methods 45
2.2 Typical Assessment Criterions 48
2.3 SVM-Based Classification Method 50
2.3.1 Theory Foundation 50
2.3.2 Classification Principle 52
2.3.3 Construction of Multi-class Classifier with the Simplest Structure 60
2.3.4 Least Squares SVM and Its SMO Optimization Algorithm 63
2.3.5 Triply Weighted Classification Method 66
2.4 Performance Assessment for SVM-Based Classification 70
2.4.1 Performance Assessment for Original SVM-Based Classification 72
2.4.2 Performance Assessment for Multi-class Classifier with the Simplest Structure 73
2.4.3 Performance Assessment for Triply Weighted Classification 74
2.5 Chapter Conclusions 76
References 77
3 Endmember Extraction Technique of HSI 79
3.1 Endmember Extraction Method:N-FINDR 79
3.1.1 Introduction of Related Theory 79
3.1.2 N-FINDR Algorithm 82
3.2 Distance Measure-Based Fast N-FINDR Algorithm 84
3.2.1 Substituting Distance Measure for Volume One 84
3.2.2 PPI Concept-Based Pixel Indexing 86
3.2.3 Complexity Analysis and Efficiency Assessment 87
3.3 Linear LSSVM-Based Distance Calculation 87
3.4 Robust Method in Endmember Extraction 89
3.4.1 In the Pre-processing Stage:Obtaining of Robust Covariance Matrix 89
3.4.2 In Endmember Extraction Stage:Deletion of Outliers 92
3.5 Performance Assessment 92
3.5.1 Distance Measure-Based N-FINDR Fast Algorithm 92
3.5.2 Robustness Assessment 94
3.6 Two Applications of Fast N-FINDR Algorithm 98
3.6.1 Construction of New Solving Algorithm for LSMM 98
3.6.2 Construction of Fast and Unsupervised Band Selection Algorithm 99
3.7 Chapter Conclusions 103
References 103
4 Spectral Unmixing Technique of HSI 105
4.1 LSMM-Based LSMA Method 105
4.2 Two New Solving Methods for Full Constrained LSMA 108
4.2.1 Parameter Substitution Method in Iteration Solving Method 108
4.2.2 Geometric Solving Method 109
4.3 The Principle of LSVM-Based Spectral Unmixing 114
4.3.1 Equality Proof of LSVM and LSMM for Spectral Unmixing 114
4.3.2 The Unique Superiority of LSVM-Based Unmixing 116
4.4 Spatial-Spectral Information-Based Unmixing Method 117
4.5 SVM-Based Spectral Unmixing Model with Unmixing Residue Constraints 118
4.5.1 Original LSSVM-Based Spectral Unmixing 119
4.5.2 Construction of Spectral Unmixing Model Based on Unmixing Residue Constrained LSSVM and Derivation of Its Closed form Solution 121
4.5.3 Substituting Multiple Endmembers for Single One in the New Model 124
4.6 Performance Assessment 125
4.6.1 Performance Assessment for Original SVM-Based Spectral Unmixing 125
4.6.2 Assessment on Robust Weighted SVM-Based Unmixing 127
4.6.3 Assessment on Spatial-Spectral Unmixing Method 129
4.6.4 Performance Assessment on New SVM Unmixing Model with Unmixing Residue Constraints 131
4.7 Fuzzy Method of Accuracy Assessment of Spectral Unmixing 135
4.7.1 Fuzzy Method of Accuracy Assessment 135
4.7.2 Application of Fuzzy Method of Accuracy Assessment in Experiments 138
4.8 Chapter Conclusions 144
References 144
5 Subpixel Mapping Technique of HSI 147
5.1 Subpixel Mapping for a Land Class with Linear Features Using a Least Square Support Vector Machine(LSSVM) 149
5.1.1 Subpixel Mapping Based on the Least Square Support Vector Machine(LSSVM) 150
5.1.2 Artificially Synthesized Training Samples 152
5.2 Spatial Attraction-Based Subpixel Mapping(SPSAM) 154
5.2.1 Subpixel Mapping Based on the Modified Subpixel/Pixel Spatial Attraction Model(MSPSAM) 154
5.2.2 Subpixel Mapping Based on the Mixed Spatial Attraction Model(MSAM) 158
5.3 Subpixel Mapping Using Markov Random Field with Subpixel Shifted Remote Sensing Images 163
5.3.1 Markov Random Field-Based Subpixel Mapping 163
5.3.2 Markov Random Field-Based Subpixel Mapping with Subpixel Shifted Remote-Sensing Images 167
5.4 Accuracy Assessment 170
5.4.1 Subpixel Mapping for Land Class with Linear Features Using the Least Squares Support Vector Machine(LSSVM) 170
5.4.2 MSPSAM and MSAM 173
5.4.3 MRF-Based Subpixel Mapping with Subpixel Shifted Remote-Sensing Images 178
5.5 Chapter Conclusions 183
References 184
6 Super-Resolution Technique of HSI 187
6.1 POCS Algorithm-Based Super-Resolution Recovery 187
6.1.1 Basic Theory of POCS 187
6.1.2 POCS Algorithm-Based Super-Resolution Recovery 189
6.2 MAP Algorithm-Based Super-Resolution Recovery 193
6.2.1 Basic Theory of MAP 193
6.2.2 MAP Algorithm-Based Super-Resolution Recovery 197
6.3 Resolution Enhancement Method for Single Band 199
6.3.1 Construction of Geometric Dual Model and Interpolation Method 200
6.3.2 Mixed Interpolation Method 203
6.4 Performance Assessment 206
6.4.1 POCS and MAP-Based Super-Resolution Methods 206
6.4.2 Dual Interpolation Method 209
6.5 Chapter Conclusions 215
References 216
7 Anomaly Detection Technique of HSI 217
7.1 Kernel Detection Algorithm Based on the Theory of the Morphology 217
7.1.1 Band Selection Based on Morphology 218
7.1.2 Kernel RX Algorithm Based on Morphology 221
7.2 Adaptive Kernel Anomaly Detection Algorithm 224
7.2.1 The Method of Support Vector Data Description 225
7.2.2 Adaptive Kernel Anomaly Detection Algorithm 228
7.3 Construction of Spectral Similarity Measurement Kemel in Kernel Anomaly Detection 232
7.3.1 The Limitations of Gaussian Radial Basis Kernel 233
7.3.2 Spectral Similarity Measurement Kernel Function 234
7.4 Performance Assessment 238
7.4.1 Effect Testing of Morphology-Based Kernel Detection Algorithm 238
7.4.2 Effect Testing of Adaptive Kernel Anomaly Detection Algorithm 241
7.4.3 Effect Testing of Spectral Similarity Measurement Kernel-Based Anomaly Detection Algorithm 244
7.5 Introduction of Other Anomaly Detection Algorithms 249
7.5.1 Spatial Filtering-Based Kernel RX Anomaly Detection Algorithm 249
7.5.2 Multiple Window Analysis-Based Kernel Detection Algorithm 252
7.6 Summary 255
References 256
8 Dimensionality Reduction and Compression Technique of HSI 257
8.1 Dimensionality Reduction Technique 257
8.1.1 SVM-Based Band Selection 257
8.1.2 Application of Typical Endmember Methods-based Band Selection 262
8.1.3 Simulation Experiments 264
8.2 Compression Technique 266
8.2.1 Vector Quantization-based Compression Algorithm 266
8.2.2 Lifting Scheme-based Compression Algorithm 273
8.3 Chapter Conclusions 279
References 280
9 Introduction of Hyperspectral Remote Sensing Applications 283
9.1 Agriculture 283
9.1.1 Wheat 283
9.1.2 Paddy 285
9.1.3 Soybean 285
9.1.4 Maize 286
9.2 Forest 286
9.2.1 Forest Investigation 286
9.2.2 Forest Biochemical Composition and Forest Health Status 289
9.2.3 Forest Disaster 290
9.2.4 Exotic Species Monitoring 291
9.3 Meadow 291
9.3.1 Biomass Estimation in Meadow 292
9.3.2 Grassland Species Identification 293
9.3.3 Chemical Constituent Estimation 294
9.4 Ocean 295
9.4.1 Basic Research on Ocean Remote Sensing 295
9.4.2 Application Research on Resource and Environment Monitoring of Ocean and Coastal Zone 296
9.4.3 International Development Trend 297
9.5 Geology 298
9.5.1 Mineral Identification 299
9.5.2 Resource Exploration 300
9.6 Environment 304
9.6.1 Atmospheric Pollution Monitoring 304
9.6.2 Soil Erosion Monitoring 305
9.6.3 Water Environment Monitoring 305
9.7 Military Affairs 306
References 308
Appendix 309
- 《大数据Hadoop 3.X分布式处理实战》吴章勇,杨强 2020
- 《书法主义图像叙述》洛齐 2019
- 《烧结法处理非常规含铁资源研究》王哲著 2018
- 《高光谱遥感图像解混理论与方法 从线性到非线性》王斌,杨斌著 2019
- 《无机元素原子光谱分析样品预处理技术》吴瑶庆 2019
- 《农村生活污水处理工艺与技术应用》李灵娜著 2019
- 《中国人民大学研究报告系列 中国水处理行业可持续发展战略研究报告 膜工业卷 3》(中国)郑祥,魏源送,王志伟 2019
- 《工业废水处理工艺与设计》高永编著 2019
- 《工业水处理技术》(中国)赵文玉,林华,许立巍 2019
- 《污水处理PPP项目实施方案编制实务》王雁然,方俊,朱立冬 2019
- 《指向核心素养 北京十一学校名师教学设计 英语 七年级 上 配人教版》周志英总主编 2019
- 《北京生态环境保护》《北京环境保护丛书》编委会编著 2018
- 《指向核心素养 北京十一学校名师教学设计 英语 九年级 上 配人教版》周志英总主编 2019
- 《抗战三部曲 国防诗歌集》蒲风著 1937
- 《高等院校旅游专业系列教材 旅游企业岗位培训系列教材 新编北京导游英语》杨昆,鄢莉,谭明华 2019
- 《中国十大出版家》王震,贺越明著 1991
- 《近代民营出版机构的英语函授教育 以“商务、中华、开明”函授学校为个案 1915年-1946年版》丁伟 2017
- 《新工业时代 世界级工业家张毓强和他的“新石头记”》秦朔 2019
- 《智能制造高技能人才培养规划丛书 ABB工业机器人虚拟仿真教程》(中国)工控帮教研组 2019
- 《陶瓷工业节能减排技术丛书 陶瓷工业节能减排与污染综合治理》罗民华著 2017