现代数论经典引论处 第2版PDF电子书下载
- 电子书积分:13 积分如何计算积分?
- 作 者:K.Ireland,M.Rosen著
- 出 版 社:世界图书出版公司北京公司
- 出版年份:2003
- ISBN:
- 页数:389 页
CHAPTER 1 Unique Factorization 1
1 Unique Factorization in Z 1
2 Unique Factorization in k[x] 6
3 Unique Factorization in a Principal Ideal Domain 8
4 The Rings Z[i]and Z[ω] 12
CHAPTER 2 Applications of Unique Factorization 17
1 Infinitely Many Primes in Z 17
2 Some Arithmetic Functions 18
3 ∑ 1/p Diverges 21
4 The Growth of π(x) 22
CHAPTER 3 Congruence 28
1 Elementary Observations 28
2 Congruence in Z 29
3 The Congruence ax?b(m) 31
4 The Chinese Remainder Theorem 34
CHAPTER 4 The Structure of U(Z/nZ) 39
1 Primitive Roots and the Group Structure of U(Z/nZ) 39
2 nth Power Residues 45
CHAPTER 5 Quadratic Reciprocity 50
1 Quadratic Residues 50
2 Law of Quadratic Reciprocity 53
3 A Proof of the Law of Quadratic Reciprocity 58
CHAPTER 6 Quadratic Gauss Sums 66
1 Algebraic Numbers and Algebraic Integers 66
2 The Quadratic Character of 2 69
3 Quadratic Gauss Sums 70
4 The Sign of the Quadratic Gauss Sum 73
CHAPTER 7 Finite Fields 79
1 Basic Properties of Finite Fields 79
2 The Existence of Finite Fields 83
3 An Application to Quadratic Residues 85
CHAPTER 8 Gauss and Jacobi Sums 88
1 Multiplicative Characters 88
2 Gauss Sums 91
3 Jacobi Sums 92
4 The Equation xn+yn=1 in Fp 97
5 More on Jacobi Sums 98
6 Applications 101
7 A General Theorem 102
CHAPTER 9 Cubic and Biquadratic Reciprocity 108
1 The Ring Z[ω] 109
2 Residue Class Rings 111
3 Cubic Residue Character 112
4 Proof of the Law of Cubic Reciprocity 115
5 Another Proof of the Law of Cubic Reciprocity 117
6 The Cubic Character of 2 118
7 Biquadratic Reciprocity:Preliminaries 119
8 The Quartic Residue Symbol 121
9 The Law of Biquadratic Reciprocity 123
10 Rational Biquadratic Reciprocity 127
11 The Constructibility of Regular Polygons 130
12 Cubic Gauss Sums and the Problem of Kummer 131
CHAPTER 10 Equations over Finite Fields 138
1 Affine Space,Projective Space,and Polynomials 138
2 Chevalley's Theorem 143
3 Gauss and Jacobi Sums over Finite Fields 145
CHAPTER 11 The Zeta Function 151
1 The Zeta Function of a Projective Hypersurface 151
2 Trace and Norm in Finite Fields 158
3 The Rationality of the Zeta Function Associated to a0xm 0+a1xm 1+…+anxm n 161
4 A Proof of the Hasse-Davenport Relation 163
5 The Last Entry 166
CHAPTER 12 Algebraic Number Theory 172
1 Algebraic Preliminaries 172
2 Unique Factorization in Algebraic Number Fields 174
3 Ramification and Degree 181
CHAPTER 13 Quadratic and Cyclotomic Fields 188
1 Quadratic Number Fields 188
2 Cyclotomic Fields 193
3 Quadratic Reciprocity Revisited 199
CHAPTER 14 The Stickelberger Relation and the Eisenstein Reciprocity Law 203
1 The Norm of an Ideal 203
2 The Power Residue Symbol 204
3 The Stickelberger Relation 207
4 The Proof of the Stickelberger Relation 209
5 The Proof of the Eisenstein Reciprocity Law 215
6 Three Applications 220
CHAPTER 15 Bernouilli Numbers 228
1 Bernoulli Numbers;Definitions and Applications 228
2 Congruences Involving Bernoulli Numbers 234
3 Herbrand's Theorem 241
CHAPTER 16 Dirichlet L-functions 249
1 The Zeta Function 249
2 A Special Case 251
3 Dirichlet Characters 253
4 Dirichlet L-functions 255
5 The Key Step 257
6 Evaluating L(s,x)at Negative Integers 261
CHAPTER 17 Diophantine Equations 269
1 Generalities and First Examples 269
2 The Method of Descent 271
3 Legendre's Theorem 272
4 Sophie Germain's Theorem 275
5 Pell's Equation 276
6 Sums of Two Squares 278
7 Sums of Four Squares 280
8 The Fermat Equation:Exponent 3 284
9 Cubic Curves with Infinitely Many Rational Points 287
10 The Equation y2=x3+k 288
11 The First Case of Fermat's Conjecture for Regular Exponent 290
12 Diophantine Equations and Diophantine Approximation 292
CHAPTER 18 Elliptic Curves 297
1 Generalities 297
2 Local and Global Zeta Functions of an Elliptic Curve 301
3 y2=x3+D,the Local Case 304
4 y2=x3-Dx,the Local Case 306
5 Hecke L-functions 307
6 y2=x3-Dx,the Global Case 310
7 y2=x3+D,the Global Case 312
8 Final Remarks 314
CHAPTER 19 The Mordell-Weil Theorem 319
1 The Addition Law and Several Identities 320
2 The Group E/2E 323
3 The Weak Dirichlet Unit Theorem 326
4 The Weak Mordell-Weil Theorem 328
5 The Descent Argument 330
CHAPTER 20 New Progress in Arithmetic Geometry 339
1 The Mordell Conjecture 340
2 Elliptic Curves 343
3 Modular Curves 345
4 Heights and the Height Regulator 348
5 New Results on the Birch-Swinnerton-Dyer Conjecture 353
6 Applications to Gauss's Class Number Conjecture 358
Selected Hints for the Exercises 367
Bibliography 375
Index 385
- 《国学经典诵读》(中国)严琼燕 2019
- 《优势谈判 15周年经典版》(美)罗杰·道森 2018
- 《日本面包师的经典配方》马妍责任编辑;王森 2019
- 《清至民国中国西北戏剧经典唱段汇辑 第8卷》孔令纪 2018
- 《小提琴经典练习曲简编 沃尔法特》丁芷诺,杨宝智 2019
- 《经典沐心 第2卷 智慧卷》宋伟 2016
- 《国际经典影像诊断学丛书 消化影像诊断学 原著第3版》王振常,蒋涛,李宏军,杨正汉译;(美)迈克尔·P.费德勒 2019
- 《徐小斌经典书系 夜谭》徐小斌 2019
- 《世界名著阅读经典 欧也妮·葛朗台 高老头 全译本 12-16岁》(法)巴尔扎克著 2017
- 《高等院校摄影摄像经典教材 摄影构图教程》崔毅 2018
- 《中风偏瘫 脑萎缩 痴呆 最新治疗原则与方法》孙作东著 2004
- 《水面舰艇编队作战运筹分析》谭安胜著 2009
- 《王蒙文集 新版 35 评点《红楼梦》 上》王蒙著 2020
- 《TED说话的力量 世界优秀演讲者的口才秘诀》(坦桑)阿卡什·P.卡里亚著 2019
- 《燕堂夜话》蒋忠和著 2019
- 《经久》静水边著 2019
- 《魔法销售台词》(美)埃尔默·惠勒著 2019
- 《微表情密码》(波)卡西亚·韦佐夫斯基,(波)帕特里克·韦佐夫斯基著 2019
- 《看书琐记与作文秘诀》鲁迅著 2019
- 《酒国》莫言著 2019
- 《TED说话的力量 世界优秀演讲者的口才秘诀》(坦桑)阿卡什·P.卡里亚著 2019
- 《小手画出大世界 恐龙世界》登亚编绘 2008
- 《近代世界史文献丛编 19》王强主编 2017
- 《课堂上听不到的历史传奇 世界政治军事名人 初中版》顾跃忠等编著 2015
- 《指向核心素养 北京十一学校名师教学设计 英语 七年级 上 配人教版》周志英总主编 2019
- 《365奇趣英语乐园 世界民间故事》爱思得图书国际企业 2018
- 《近代世界史文献丛编 36》王强主编 2017
- 《北京生态环境保护》《北京环境保护丛书》编委会编著 2018
- 《近代世界史文献丛编 11》王强主编 2017
- 《近代世界史文献丛编 18》王强主编 2017