线性发展方程的单参数半群 英文PDF电子书下载
- 电子书积分:17 积分如何计算积分?
- 作 者:(意)恩格尔(EngelK.J.)著
- 出 版 社:北京/西安:世界图书出版公司
- 出版年份:2013
- ISBN:7510061479
- 页数:589 页
Ⅰ.Linear Dynamical Systems 1
1.Cauchy's Functional Equation 2
2.Finite-Dimensional Systems:Matrix Semigroups 6
3.Uniformly Continuous Operator Semigroups 14
4.More Semigroups 24
a.Multiplication Semigroups on Co(Ω) 24
b.Multiplication Semigroups on Lp(Ω,μ) 30
c.Translation Semigroups 33
5.Strongly Continuous Semigroups 36
a.Basic Properties 37
b.Standard Constructions 42
Notes 46
Ⅱ.ISemigroups,Generators,and Resolvents 47
1.Generators of Semigroups and Their Resolvents 48
2.Examples Revisited 59
a.Standard Constructions 59
b.Standard Examples 65
3.Hille-Yosida Generation Theorems 70
a.Generation of Groups and Semigroups 71
b.Dissipative Operators and Contraction Semigroups 82
c.More Examples 89
4.Special Classes of Semigroups 96
a.Analytic Semigroups 96
b.Differentiable Semigroups 109
c.Eventually Norm-Continuous Semigroups 112
d.Eventually Compact Semigroups 117
e.Examples 120
5.Interpolation and Extrapolation Spaces for Semigroups 123
Simon Brendle 124
a.Sobolev Towers 124
b.Favard and Abstract H?lder Spaces 129
c.Fractional Powers 137
6.Well-Posedness for Evolution Equations 145
Notes 154
Ⅲ.Perturbation and Approximation of Semigroups 157
1.Bounded Perturbations 157
2.Perturbations of Contractive and Analytic Semigroups 169
3.More Perturbations 182
a.The Perturbation Theorem of Desch-Schappacher 182
b.Comparison of Semigroups 192
c.The Perturbation Theorem of Miyadera-Voigt 195
d.Additive Versus Multiplicative Perturbations 201
4.Trotter-Kato Approximation Theorems 205
a.A Technical Tool:Pseudoresolvents 206
b.The Approximation Theorems 209
c.Examples 214
5.Approximation Formulas 219
a.Chernoff Product Formula 219
b.Inversion Formulas 231
Notes 236
Ⅳ.Spectral Theory for Semigroups and Generators 238
1.Spectral Theory for Closed Operators 239
2.Spectrum of Semigroups and Generators 250
a.Basic Theory 250
b.Spectrum of Induced Semigroups 259
c.Spectrum of Periodic Semigroups 266
3.Spectral Mapping Theorems 270
a.Examples and Counterexamples 270
b.Spectral Mapping Theorems for Semigroups 275
c.Weak Spectral Mapping Theorem for Bounded Groups 283
4.Spectral Theory and Perturbation 289
Notes 293
Ⅴ.Asymptotics of Semigroups 295
1.Stability and Hyperbolicity for Semigroups 296
a.Stability Concepts 296
b.Characterization of Uniform Exponential Stability 299
c.Hyperbolic Decompositions 305
2.Compact Semigroups 308
a.General Semigroups 308
b.Weakly Compact Semigroups 312
c.Strongly Compact Semigroups 317
3.Eventually Compact and Quasi-compact Semigroups 329
4.Mean Ergodic Semigroups 337
Notes 345
Ⅵ.Semigroups Everywhere 347
1.Semigroups for Population Equations 348
a.Semigroup Method for the Cell Equation 349
b.Intermezzo on Positive Semigroups 353
c.Asymptotics for the Cell Equation 358
Notes 361
2.Semigroups for the Transport Equation 361
a.Solution Semigroup for the Reactor Problem 361
b.Spectral and Asymptotic Behavior 364
Notes 367
3.Semigroups for Second-Order Cauchy Problems 367
a.The State Space x=XB 1×X 369
b.The State Space x=X×X 372
c.The State Space x=XC 1×X 374
Notes 382
4.Semigroups for Ordinary Differential Operators 383
M.Campiti,G.Metafune,D.Pallara,and S.Romanelli 384
a.Nondegenerate Operators on R and R+ 384
b.Nondegenerate Operators on Bounded Intervals 388
c.Degenerate Operators 390
d.Analyticity of Degenerate Semigroups 400
Notes 403
5.Semigroups for Partial Differential Operators 404
Abdelaziz Rhandi 405
a.Notation and Preliminary Results 405
b.Elliptic Differential Operators with Constant Coefficients 408
c.Elliptic Differential Operators with Variable Coefficients 411
Notes 419
6.Semigroups for Delay Differential Equations 419
a.Well-Posedness of Abstract Delay Differential Equations 420
b.Regularity and Asymptotics 424
c.Positivity for Delay Differential Equations 428
Notes 435
7.Semigroups for Volterra Equations 435
a.Mlid and Classical Solutions 436
b.Optimal Regularity 442
c.Integro-Differential Equations 447
Notes 452
8.Semigroups for Control Theory 452
a.Controllability 456
b.Observability 466
c.Stabilizability and Detectability 468
d.Transfer Functions and Stability 473
Notes 476
9.Semigroups for Nonautonomous Cauchy Problems 477
Roland Schnaubelt 477
a.Cauchy Problems and Evolution Families 477
b.Evolution Semigroups 481
c.Perturbation Theory 487
d.Hyperbolic Evolution Families in the Parabolic Case 492
Notes 496
Ⅶ.A Brief History of the Exponential Function 497
Tanja Hahn and Carla Perazzoli 497
1.A Bird's-Eye View 497
2.The Functional Equation 500
3.The Differential Equation 502
4.The Birth ofSemigroup Theory 506
Appendix 509
A.A Reminder of Some Functional Analysis 509
B.A Reminder of Some Operator Theory 515
C.Vector-Valued Integration 522
a.The Bochner Integral 522
b.The Fourier Transform 526
c.The Laplace Transform 530
Epilogue 531
Determinism:Scenes from the Interplay Between Metaphysics and Mathematics 531
Gregor Nickel 533
1.The Mathematical Structure 533
2.Are Relativity,Quantum Mechanics,and Chaos Deterministic? 536
3.Determinism in Mathematical Science from Newton to Einstein 538
4.Developments in the Concept of Object from Leibniz to Kant 546
5.Back to Some Roots of Our Problem:Motion in History 549
6.Bibliography and Further Reading 553
References 555
List of Symbols and Abbreviations 577
Index 580
- 《现代水泥技术发展与应用论文集》天津水泥工业设计研究院有限公司编 2019
- 《情报学 服务国家安全与发展的现代情报理论》赵冰峰著 2018
- 《学前儿童发展心理学 第2版》刘万伦主编;王文秀,甘卫群,刘万伦编写人员 2019
- 《中国制造业绿色供应链发展研究报告》中国电子信息产业发展研究院 2019
- 《中央财政支持提升专业服务产业发展能力项目水利工程专业课程建设成果 设施农业工程技术》赵英编 2018
- 《大学生心理健康与人生发展》王琳责任编辑;(中国)肖宇 2019
- 《大学英语教学的跨文化交际视角研究与创新发展》许丽云,刘枫,尚利明著 2020
- 《线性代数简明教程》刘国庆,赵剑,石玮编著 2019
- 《高校转型发展系列教材 素描基础与设计》施猛责任编辑;(中国)魏伏一,徐红 2019
- 《Helmholtz方程的步进计算方法研究》李鹏著 2019
- 《中风偏瘫 脑萎缩 痴呆 最新治疗原则与方法》孙作东著 2004
- 《水面舰艇编队作战运筹分析》谭安胜著 2009
- 《王蒙文集 新版 35 评点《红楼梦》 上》王蒙著 2020
- 《TED说话的力量 世界优秀演讲者的口才秘诀》(坦桑)阿卡什·P.卡里亚著 2019
- 《燕堂夜话》蒋忠和著 2019
- 《经久》静水边著 2019
- 《魔法销售台词》(美)埃尔默·惠勒著 2019
- 《微表情密码》(波)卡西亚·韦佐夫斯基,(波)帕特里克·韦佐夫斯基著 2019
- 《看书琐记与作文秘诀》鲁迅著 2019
- 《酒国》莫言著 2019
- 《TED说话的力量 世界优秀演讲者的口才秘诀》(坦桑)阿卡什·P.卡里亚著 2019
- 《小手画出大世界 恐龙世界》登亚编绘 2008
- 《近代世界史文献丛编 19》王强主编 2017
- 《课堂上听不到的历史传奇 世界政治军事名人 初中版》顾跃忠等编著 2015
- 《指向核心素养 北京十一学校名师教学设计 英语 七年级 上 配人教版》周志英总主编 2019
- 《365奇趣英语乐园 世界民间故事》爱思得图书国际企业 2018
- 《近代世界史文献丛编 36》王强主编 2017
- 《北京生态环境保护》《北京环境保护丛书》编委会编著 2018
- 《近代世界史文献丛编 11》王强主编 2017
- 《近代世界史文献丛编 18》王强主编 2017