当前位置:首页 > 数理化
概率论入门  英文
概率论入门  英文

概率论入门 英文PDF电子书下载

数理化

  • 电子书积分:15 积分如何计算积分?
  • 作 者:(美)雷斯尼克(ResnickS.I.)著
  • 出 版 社:北京/西安:世界图书出版公司
  • 出版年份:2013
  • ISBN:9787510058271
  • 页数:453 页
图书介绍:本书是一部十分经典的概率论教程。1999年初版,2001年第2次重印,2003年第3次重印,同年第4次重印,2005年第5次重印,受欢迎程度可见一斑。大多数概率论书籍是写给数学家看的,漂亮的数学材料是吸引读者的一大亮点;相反地,本书目标读者是数学及非数学专业的研究生,帮助那些在统计、应用概率论、生物、运筹学、数学金融和工程研究中需要深入了解高等概率论的所有人员。目次:集合和事件;概率空间;随机变量、元素和可测映射;独立性;积分和期望;收敛的概念;大数定律和独立随机变量的和;分布的收敛;特征函数和。
上一篇:创意游戏 6下一篇:线性代数
《概率论入门 英文》目录

1 Sets and Events 1

1.1 Introduction 1

1.2 Basic Set Theory 2

1.2.1 Indicator functions 5

1.3 Limits of Sets 6

1.4 Monotone Sequences 8

1.5 Set Operations and Closure 11

1.5.1 Examples 13

1.6 Theσ-field Generated by a Given Class C 15

1.7 Borel Sets on the Real Line 16

1.8 Comparing Borel Sets 18

1.9 Exercises 20

2 Probability Spaces 29

2.1 Basic Definitions and Properties 29

2.2 More on Closure 35

2.2.1 Dynkin's theorem 36

2.2.2 Proof of Dynkin's theorem 38

2.3 Two Constructions 40

2.4 Constructions of Probability Spaces 42

2.4.1 General Construction of a Probability Model 43

2.4.2 Proof of the Second Extension Theorem 49

2.5 Measure Constructions 57

2.5.1 Lebesgue Measure on(0,1] 57

2.5.2 Construction of a Probability Measure on R witl Given Distribution Function F(x) 61

2.6 Exercises 63

3 Random Variables,Elements,and Measurable Maps 71

3.1 Inverse Maps 71

3.2 Measurable Maps,Random Elements,Induced Probability Measures 74

3.2.1 Composition 77

3.2.2 Random Elements of Metric Spaces 78

3.2.3 Measurability and Continuity 80

3.2.4 Measurability and Limits 81

3.3 σ-Fields Generated by Maps 83

3.4 Exercises 85

4 Independence 91

4.1 Basic Definitions 91

4.2 Independent Random Variables 93

4.3 Two Examples of Independence 95

4.3.1 Records,Ranks,Renyi Theorem 95

4.3.2 Dyadic Expansions of Uniform Random Numbers 98

4.4 More on Independence:Groupings 100

4.5 Independence,Zero-One Laws,Borel-Cantelli Lemma 102

4.5.1 Borel-Cantelli Lemma 102

4.5.2 Borel Zero-One Law 103

4.5.3 Kolmogorov Zero-One Law 107

4.6 Exercises 110

5 Integration and Expectation 117

5.1 Preparation for Integration 117

5.1.1 Simple Functions 117

5.1.2 Measurability and Simple Functions 118

5.2 Expectation and Integration 119

5.2.1 Expectation of Simple Functions 119

5.2.2 Extension of the Definition 122

5.2.3 Basic Properties of Expectation 123

5.3 Limits and Integrals 131

5.4 Indefinite Integrals 134

5.5 The Trarnsformation Theorem and Densities 135

5.5.1 Expectation is Always an Integral on R 137

5.5.2 Densities 139

5.6 The Riemann vs Lebesgue Integral 139

5.7 Product Spaces 143

5.8 Probability Measures on Product Spaces 147

5.9 Fubini's theorem 149

5.10 Exercises 155

6 Convergence Concepts 167

6.1 Almost Sure Convergence 167

6.2 Convergence in Probability 169

6.2.1 Statistical Terminology 170

6.3 Connections Between a.s.and i.p.Convergence 171

6.4 Quantile Estimation 178

6.5 Lp Convergence 180

6.5.1 Uniform Integrability 182

6.5.2 Interlude:A Review of Inequalities 186

6.6 More on Lp Convergence 189

6.7 Exercises 195

7 Laws of Large Numbers and Sums of Independent Raudom Variables 203

7.1 Truncation and Equivalence 203

7.2 A General Weak Law of Large Numbers 204

7.3 Almost Sure Convergence of Sums of Independent Random Variables 209

7.4 Strong Laws of Large Numbers 213

7.4.1 Two Examples 215

7.5 The Strong Law of Large Numbers for IID Sequences 219

7.5.1 Two Applications of the SLLN 222

7.6 The Kolmogorov Three Series Theorem 226

7.6.1 Necessity of the Kolmogorov Three Series Theorem 230

7.7 Exercises 234

8 Convergence in Distribution 247

8.1 Basic Definitions 247

8.2 Scheffé's lemma 252

8.2.1 Scheffé's lemma and Order Statistics 255

8.3 The Baby Skorohod Theorem 258

8.3.1 The Delta Method 261

8.4 Weak Convergence Equivalences;Portmanteau Theorem 263

8.5 More Relations Among Modes of Convergence 267

8.6 New Convergences from Old 268

8.6.1 Example:The Central Limit Theorem for m-Dependent Random Variables 270

8.7 The Convergence to Types Theorem 274

8.7.1 Application of Convergence to Types:Limit Distributions for Extremes 278

8.8 Exercises 282

9 Characteristic Functions and the Central Limit Theorem 293

9.1 Review of Moment Generating Functions and the Central Limit Theorem 294

9.2 Characteristic Functions:Definition and First Properties 295

9.3 Expansions 297

9.3.1 Expansion of eix 297

9.4 Moments and Derivatives 301

9.5 Two Big Theorems:Uniqueness and Continuity 302

9.6 The Selection Theorem,Tightness,and Prohorov's theorem 307

9.6.1 The Selection Theorem 307

9.6.2 Tightness,Relative Compactness,and Prohorov's theorem 309

9.6.3 Proof of the Continuity Theorem 311

9.7 The Classical CLT for iid Random Variables 312

9.8 The Lindeberg-Feller CLT 314

9.9 Exercises 321

10 Martingales 333

10.1 Prelude to Conditional Expectation:The Radon-Nikodym Theorem 333

10.2 Definition of Conditional Expectation 339

10.3 Properties of Conditional Expectation 344

10.4 Martingales 353

10.5 Examples of Martingales 356

10.6 Connections between Martingales and Submartingales 360

10.6.1 Doob's Decomposition 360

10.7 Stopping Tirmes 363

10.8 Positive Super Martingales 366

10.8.1 Operations on Supermartingales 367

10.8.2 Uperossings 369

10.8.3 Boundedness Properties 369

10.8.4 Convergence of Positive Super Martingales 371

10.8.5 Closure 374

10.8.6 Stopping Supermartingales 377

10.9 Examples 379

10.9.1 Gambler's Ruin 379

10.9.2 Branching Processes 380

10.9.3 Some Differentiation Theory 382

10.10 Martingale and Submartingale Convergence 386

10.10.1 Krickeberg Decomposition 386

10.10.2 Doob's(Sub)martingale Convergence Theorem 387

10.11 Regularity and Closure 388

10.12 Regularity and Stopping 390

10.13 Stopping Theorems 392

10.14 Wald's Identity and Random Walks 398

10.14.1 The Basic Martingales 400

10.14.2 Regular Stopping Times 402

10.14.3 Examples of Integrable Stopping Times 407

10.14.4 The Simple Random Walk 409

10.15 Reversed Martingales 412

10.16 Fundamental Theorems of Mathematical Finance 416

10.16.1 A Simple Market Model 416

10.16.2 Admissible Strategies and Arbitrage 419

10.16.3 Arbitrage and Martingales 420

10.16.4 Complete Markets 425

10.16.5 Option Pricing 428

10.17 Exercises 429

References 443

Index 445

返回顶部