当前位置:首页 > 数理化
偏微分方程中的逆问题  第2版
偏微分方程中的逆问题  第2版

偏微分方程中的逆问题 第2版PDF电子书下载

数理化

  • 电子书积分:12 积分如何计算积分?
  • 作 者:(美)艾赛科威(IsakovV.)著
  • 出 版 社:北京/西安:世界图书出版公司
  • 出版年份:2014
  • ISBN:9787510070235
  • 页数:347 页
图书介绍:本书全面讲述了目前偏微分方程中逆问题的理论和数值方面。逆问题这个话题十分宽泛,并且得到了众多科学家和工程人员的青睐。这是第二版,包括了逆问题领域的最新进展,给出了理论和计算方法,强调最新观点和技巧。书中也体现了和第一版的不同,做了许多修订,内容更加充实,增加了如伪凸的概念,简化了证明。新材料的增加反应了逆问题理论的最新进展。本书对象是偏微分方程及其应用领域的数学工作者、物理学家、几何物理学家和工程人员。
《偏微分方程中的逆问题 第2版》目录

Chapter 1 Inverse Problems 1

1.1 The inverse problem of gravimetry 1

1.2 The inverse conductivity problem 5

1.3 Inverse scattering 7

1.4 Tomography and the inverse seismic problem 10

1.5 Inverse spectral problems 14

Chapter 2 Ill-Posed Problems and Regularization 20

2.1 Well- and ill-posed problems 20

2.2 Conditional correctness:Regularization 23

2.3 Construction of regularizers 26

2.4 Convergence of regularization algorithms 33

2.5 Iterative algorithms 37

Chapter 3 Uniqueness and Stability in the Cauchy Problem 41

3.1 The backward parabolic equation 42

3.2 General Carleman estimates and the Cauchy problem 51

3.3 Elliptic and parabolic equations 57

3.4 Hyperbolic and Schr?dinger equations 65

3.5 Systems of partial differential equations 80

3.6 Open problems 86

Chapter 4 Elliptic Equations:Single Boundary Measurements 89

4.0 Results on elliptic boundary value problems 89

4.1 Inverse gravimetry 92

4.2 Reconstruction of lower-order terms 97

4.3 The inverse conductivity problem 102

4.4 Methods of the theory of one complex variable 111

4.5 Linearization of the coefficients problem 116

4.6 Some problems of detection of defects 119

4.7 Open problems 125

Chapter 5 Elliptic Equations:Many Boundary Measurements 127

5.0 The Dirichlet-to-Neumann map 127

5.1 Boundary reconstruction 130

5.2 Reconstruction in Ω 134

5.3 Completeness of products of solutions of PDE 138

5.4 Recovery of several coefficients 143

5.5 The plane case 149

5.6 Nonlinear equations 154

5.7 Discontinuous conductivities 160

5.8 Maxwell's and elasticity systems 166

5.9 Open problems 170

Chapter 6 Scattering Problems 173

6.0 Direct Scattering 173

6.1 From A to near field 176

6.2 Scattering by a medium 180

6.3 Scattering by obstacles 184

6.4 Open problems 190

Chapter 7 Integral Geometry and Tomography 192

7.1 The Radon transform and its inverse 192

7.2 The energy integral methods 201

7.3 Boman's counterexample 205

7.4 The transport equation 208

7.5 Open problems 215

Chapter 8 Hyperbolic Problems 218

8.0 Introduction 218

8.1 The one-dimensional case 221

8.2 Single boundary measurements 229

8.3 Many measurements:use of beam solutions 236

8.4 Many measurements:methods of boundary control 243

8.5 Recovery of discontinuity of the speed of propagation 249

8.6 Open problems 253

Chapter 9 Inverse parabolic problems 255

9.0 Introduction 255

9.1 Final overdetermination 259

9.2 Lateral overdetermination:single measurements 264

9.3 The inverse problem of option pricing 270

9.4 Lateral overdetermination:many measurements 275

9.5 Discontinuous principal coefficient and recovery of a domain 279

9.6 Nonlinear equations 288

9.7 Interior sources 293

9.8 Open problems 295

Chapter 10 Some Numerical Methods 297

10.1 Linearization 298

10.2 Variational regularization of the Cauchy problem 303

10.3 Relaxation methods 308

10.4 Layer-stripping 310

10.5 Range test algorithms 313

10.6 Discrete methods 318

Appendix.Functional Spaces 321

References 324

Index 343

返回顶部