当前位置:首页 > 数理化
原子、分子和光子  第2版  英文
原子、分子和光子  第2版  英文

原子、分子和光子 第2版 英文PDF电子书下载

数理化

  • 电子书积分:17 积分如何计算积分?
  • 作 者:(德)登特德(DemtrderW.)著
  • 出 版 社:北京:世界图书北京出版公司
  • 出版年份:2014
  • ISBN:9787510068126
  • 页数:591 页
图书介绍:这部讲述原子和分子物理的入门级书籍,通过许多实验验证介绍了过去两个世纪原子和分子模型的进展;从理论方面,介绍了量子物理到微粒子的大量描述。运用许多例子剖析了粒子波模型,呈现出传统描述的局限性。书中详细阐述了分子和原子电磁辐射的相互作用,以及其在光谱学中的潜力,特别地强调了激光作为现代光谱工具的重要性。书中许多例子和练习可以鼓励读者积极投身于将教科书中学到的知识应用到具体情况。这是第二版,在第一版的基础上做了大量的修订,增加了最新进展,如X—射线光学、离子回旋共振光谱仪等。读者对象:物理专业的研究。
《原子、分子和光子 第2版 英文》目录

1.Introduction 1

1.1 Contents and Importance of Atomic Physics 1

1.2 Molecules:Building Blocks of Nature 3

1.3 Survey on the Concept of this Textbook 4

2.The Concept of the Atom 7

2.1 Historical Development 7

2.2 Experimental and Theoretical Proofs for the Existence of Atoms 9

2.2.1 Dalton's Law of Constant Proportions 9

2.2.2 The Law of Gay-Lussac and the Definition of the Mole 11

2.2.3 Experimental Methods for the Determination of Avogadro's Constant 12

2.2.4 The Importance of Kinetic Gas Theory for the Concept of Atoms 17

2.3 Can One See Atoms? 20

2.3.1 Brownian Motion 20

2.3.2 Cloud Chamber 24

2.3.3 Microscopes with Atomic Resolution 24

2.4 The Size of Atoms 29

2.4.1 The Size of Atoms in the Van der Waals Equation 29

2.4.2 Atomic Size Estimation from Transport Coefficients 29

2.4.3 Atomic Volumes from X-Ray Diffraction 31

2.4.4 Comparison of the Different Methods 32

2.5 The Electric Structure of Atoms 33

2.5.1 Cathode Rays and Kanalstrahlen 34

2.5.2 Measurement of the Elementary Charge e 35

2.5.3 How to Produce Free Electrons 37

2.5.4 Generation of Free Ions 39

2.5.5 The Mass of the Electron 41

2.5.6 How Neutral is the Atom? 44

2.6 Electron and Ion Optics 45

2.6.1 Refraction of Electron Beams 45

2.6.2 Electron Optics in Axially Symmetric Fields 47

2.6.3 Electrostatic Electron Lenses 49

2.6.4 Magnetic Lenses 50

2.6.5 Applications of Electron and Ion Optics 52

2.7 Atomic Masses and Mass Spectrometers 53

2.7.1 J.J.Thomson's Parabola Spectrograph 54

2.7.2 Velocity-Independent Focusing 55

2.7.3 Focusing of Ions with Different Angles of Incidence 57

2.7.4 Mass Spectrometer with Double Focusing 57

2.7.5 Time-of-Flight Mass Spectrometer 58

2.7.6 Quadrupole Mass Spectrometer 61

2.7.7 Ion-Cyclotron-Resonance Spectrometer 63

2.7.8 Isotopes 64

2.8 The Structure of Atoms 65

2.8.1 Integral and Differential Cross Sections 65

2.8.2 Basic Concepts of Classical Scattering 66

2.8.3 Determination of the Charge Distribution within the Atom from Scattering Experiments 70

2.8.4 Thomson's Atomic Model 71

2.8.5 The Ruthefford Atomic Model 73

2.8.6 Rutherford's Scattering Formula 74

Summary 77

Problems 79

3.Development of Quantum Physics 81

3.1 Experimental Hints to the Particle Character of Electromagnetic Radiation 81

3.1.1 Blackbody Radiation 82

3.1.2 Cavity Modes 84

3.1.3 Planck's Radiation Law 86

3.1.4 Wien's Law 88

3.1.5 Stefan-Boltzmann's Radiation Law 88

3.1.6 Photoelectric Effect 89

3.1.7 Compton Effect 91

3.1.8 Properties of Photons 93

3.1.9 Photons in Gravitational Fields 94

3.1.10 Wave and Particle Aspects of Light 95

3.2 Wave Properties of Particles 97

3.2.1 De Broglie Wavelength and Electron Diffraction 97

3.2.2 Diffraction and Interference of Atoms 98

3.2.3 Bragg Reflection and the Neutron Spectrometer 100

3.2.4 Neutron and Atom Interferometry 100

3.2.5 Application of Particle Waves 101

3.3 Matter Waves and Wave Functions 102

3.3.1 Wave Packets 103

3.3.2 The Statistical Interpretation of Wave Functions 105

3.3.3 Heisenberg's Uncertainty Principle 106

3.3.4 Dispersion of the Wave Packet 109

3.3.5 Uncertainty Relation for Energy and Time 110

3.4 The Quantum Structure of Atoms 111

3.4.1 Atomic Spectra 112

3.4.2 Bohr's Atomic Model 113

3.4.3 The Stability of Atoms 117

3.4.4 Franck-Hertz Experiment 118

3.5 What are the Differences Between Classical and Quantum Physics? 120

3.5.1 Classical Particle Paths Versus Probability Densities in Quantum Physics 120

3.5.2 Interference Phenomena with Light Wayes and Matter Waves 121

3.5.3 The Effect of the Measuring Process 123

3.5.4 The Importance of Quantum Physics for our Concept of Nature 124

Summary 125

Problems 127

4.Basic Concepts of Quantum Mechanics 129

4.1 The Schr?dinger Equation 129

4.2 Some Examples 131

4.2.1 The Free Particle 131

4.2.2 Potential Barrier 132

4.2.3 Tunnel Effect 135

4.2.4 Particle in a Potential Box 138

4.2.5 Harmonic Oscillator 141

4.3 Two-and Three-Dimensional Problems 144

4.3.1 Particle in a Two-dimensional Box 144

4.3.2 Particle in a Spherically Symmetric Potential 145

4.4 Expectation Values and Operators 149

4.4.1 Operators and Eigenvalues 150

4.4.2 Angular Momentum in Quantum Mechanics 152

Summary 155

Problems 157

5.The Hydrogen Atom 159

5.1 Schr?dinger Equation for One-electron Systems 159

5.1.1 Separation of the Center of Mass and Relative Motion 159

5.1.2 Solution of the Radial Equation 161

5.1.3 Quantum Numbers and Wave Functions of the H Atom 163

5.1.4 Spatial Distributions and Expectation Values of the Electron in Different Quantum States 166

5.2 The Normal Zeeman Effect 168

5.3 Comparison of Schr?dinger Theory with Experimental Results 170

5.4 Relativistic Correction of Energy Terms 172

5.5 The Electron Spin 174

5.5.1 The Stern-Gerlach Experiment 175

5.5.2 Experimental Confirmation of Electron Spin 176

5.5.3 Einstein-de Haas Effect 177

5.5.4 Spin-Orbit Coupling and Fine Structure 178

5.5.5 Anomalous Zeeman Effect 181

5.6 Hyperfine Structure 184

5.6.1 Basic Considerations 184

5.6.2 Fermi-contact Interaction 186

5.6.3 Magnetic Dipole-Dipole Interaction 187

5.6.4 Zeeman Effect of Hyperfine Structure Levels 187

5.7 Complete Description of the Hydrogen Atom 188

5.7.1 Total Wave Function and Quantum Numbers 188

5.7.2 Term Assignment and Level Scheme 188

5.7.3 Lamb Shift 191

5.8 Correspondence Principle 194

5.9 The Electron Model and its Problems 195

Summary 198

Problems 200

6.Atoms with More Than One Electron 201

6.1 The Helium Atom 201

6.1.1 Approximation Models 202

6.1.2 Symmetry of the Wave Function 203

6.1.3 Consideration of the Electron Spin 204

6.1.4 The Pauli Principle 205

6.1.5 Energy Levels of the Helium Atom 206

6.1.6 Helium Spectrum 208

6.2 Building-up Principle of the Electron Shell for Larger Atoms 209

6.2.1 The Model of Electron Shells 209

6.2.2 Successive Building-up of Electron Shells for Atoms with Increasing Nuclear Charge 210

6.2.3 Atomic Volumes and Ionization Energies 212

6.2.4 The Periodic System of the Elements 216

6.3 Alkali Atoms 218

6.4 Theoretical Models for Multielectron Atoms 221

6.4.1 The Model of Independent Electrons 221

6.4.2 The Hartree Method 222

6.4.3 The Hartree-Fock Method 224

6.4.4 Configuration Interaction 224

6.5 Electron Configurations and Couplings of Angular Momenta 224

6.5.1 Coupling Schemes for Electronic Angular Momenta 224

6.5.2 Electron Configuration and Atomic States 229

6.6 Excited Atomic States 231

6.6.1 Single Electron Excitation 232

6.6.2 Simultaneous Excitation of Two Electrons 232

6.6.3 Inner-Shell Excitation and the Auger Process 233

6.6.4 Rydberg States 234

6.6.5 Planetary Atoms 236

6.7 Exotic Atoms 237

6.7.1 Muonic Atoms 238

6.7.2 Pionic and Kaonic Atoms 239

6.7.3 Anti-hydrogen Atoms and Other Anti-atoms 240

6.7.4 Positronium and Muonium 241

Summary 243

Problems 245

7. Emission and Absorption of Electromagnetic Radiation by Atoms 248

7.1 Transition Probabilities 248

7.1.1 Induced and Spontaneous Transitions,Einstein Coefficients 248

7.1.2 Transition Probabilities,Einstein Coefficients and Matrix Elements 250

7.1.3 Transition Probabilities for Absorption and Induced Emission 253

7.2 Selection Rules 253

7.2.1 Selection Rules for Spontaneous Emission 253

7.2.2 Selection Rules for the Magnetic Quantum Number 254

7.2.3 Parity Selection Rules 255

7.2.4 Selection Rules for Induced Absorption and Emission 256

7.2.5 Selection Rules for the Spin Quantum Number 256

7.2.6 Higher Order Multipole Transitions 257

7.2.7 Magnetic Dipole Transitions 259

7.2.8 Two-Photon-Transitions 259

7.3 Lifetimes of Excited States 260

7.4 Line Profiles of Spectral Lines 261

7.4.1 Natural Linewidth 262

7.4.2 Doppler Broadening 264

7.4.3 Collision Broadening 267

7.5 X-Rays 270

7.5.1 Bremsstrahlung 271

7.5.2 Characteristic X-Ray-Radiation 272

7.5.3 Scattering and Absorption of X-Rays 273

7.5.4 X-ray Fluorescence 278

7.5.5 Measurements of X-Ray Wavelengths 278

7.6 Continuous Absorption and Emission Spectra 280

7.6.1 Photoionization 281

7.6.2 Recombination Radiation 284

Summary 286

Problems 287

8.Lasers 289

8.1 Physical Principles 289

8.1.1 Threshold Condition 290

8.1.2 Generation of Population Inversion 292

8.1.3 The Frequency Spectrum of Induced Emission 295

8.2 Optical Resonators 295

8.2.1 The Quality Factor of Resonators 295

8.2.2 Open Optical Resonators 296

8.2.3 Modes of Open Resonators 297

8.2.4 Diffraction Losses of Open Resonators 300

8.2.5 The Frequency Spectrum of Optical Resonators 301

8.3 Single Mode Lasers 301

8.4 Different Types of Lasers 304

8.4.1 Solid-state Lasers 305

8.4.2 Semiconductor Lasers 307

8.4.3 Dye Lasers 308

8.4.4 Gas Lasers 310

8.5 Nonlinear Optics 313

8.5.1 Optical Frequency Doubling 314

8.5.2 Phase Matching 314

8.5.3 Optical Frequency Mixing 316

8.6 Generation of Short Laser Pulses 316

8.6.1 Q-Switched Lasers 316

8.6.2 Mode-Locking of Lasers 318

8.6.3 Optical Pulse Compression 321

8.6.4 Measurements of Ultrashort Optical Pulses 322

Summary 324

Problems 324

9.Diatomic Molecules 327

9.1 The H+ 2 Molecular Ion 327

9.1.1 The Exact Solution for the Rigid H+ 2 Molecule 328

9.1.2 Molecular Orbitals and LCAO Approximations 331

9.1.3 Improvements to the LCAO ansatz 334

9.2 The H2 Molecule 335

9.2.1 Molecular Orbital Approximation 336

9.2.2 The Heitler-London Method 337

9.2.3 Comparison Between the Two Approximations 338

9.2.4 Improvements to the Approximations 339

9.3 Electronic States of Diatomic Molecules 340

9.3.1 The Energetic Order of Electronic States 340

9.3.2 Symmetry Properties of Electronic States 341

9.3.3 Electronic Angular Momenta 341

9.3.4 Electron Spins,Multiplicity and Fine Structure Splittings 343

9.3.5 Electron Configurations and Molecular Ground States 344

9.3.6 Excited Molecular States 346

9.3.7 Excimers 347

9.3.8 Correlation Diagrams 348

9.4 The Physical Reasons for Molecular Binding 349

9.4.1 The Chemical Bond 349

9.4.2 Multipole Interaction 350

9.4.3 Induced Dipole Moments and van der Waals Potential 352

9.4.4 General Expansion of the Interaction Potential 355

9.4.5 The Morse Potential 355

9.4.6 Different Binding Types 356

9.5 Rotation and Vibration of Diatomic Molecules 357

9.5.1 The Born-Oppenheimer Approximation 357

9.5.2 The Rigid Rotor 359

9.5.3 Centrifugal Distortion 361

9.5.4 The Influence of the Electron Motion 361

9.5.5 Vibrations of Diatomic Molecules 363

9.5.6 Interaction Between Rotation and Vibration 364

9.5.7 The Dunham Expansion 366

9.5.8 Rotational Barrier 366

9.6 Spectra of Diatomic Molecules 367

9.6.1 Transition Matrix Elements 367

9.6.2 Vibrational-Rotational Transitions 369

9.6.3 The Structure of Electronic Transitions 372

9.6.4 Continuous Spectra 377

Summary 380

Problems 381

10.Polyatomic Molecules 383

10.1 Electronic States of Polyatomic Molecules 383

10.1.1 The H2O Molecule 383

10.1.2 Hybridization 384

10.1.3 The CO2 Molecule 388

10.1.4 Walsh Diagrams 389

10.2 Molecules with more than Three Atoms 390

10.2.1 The NH3 Molecule 390

10.2.2 Formaldehyde and Other H2AB Molecules 392

10.2.3 Aromatic Molecules andπ-Electron Systems 392

10.3 Rotation of Polyatomic Molecules 394

10.3.1 Rotation of Symmetric Top Molecules 397

10.3.2 Asymmetric Rotor Molecules 399

10.4 Vibrations of Polyatomic Molecules 399

10.4.1 Normal Vibrations 399

10.4.2 Quantitative Treatment 399

10.4.3 Couplings Between Vibrations and Rotations 402

10.5 Spectra of Polyatomic Molecules 403

10.5.1 Vibrational Transitions within the Same Electronic State 404

10.5.2 Rotational Structure of Vibrational Bands 406

10.5.3 Electronic Transitions 407

10.6 Clusters 408

10.6.1 Production of Clusters 410

10.6.2 Physical Properties of Clusters 410

10.7 Chemical Reactions 412

10.7.1 First Order Reactions 412

10.7.2 Second Order Reactions 413

10.7.3 Exothermic and Endothermic Reactions 414

10.7.4 Determination of Absolute Reaction Rates 415

10.8 Molecular Dynamics and Wave Packets 416

Summary 418

Problems 420

11.Experimental Techniques in Atomic and Molecular Physics 422

11.1 Basic Principles of Spectroscopic Techniques 422

11.2 Spectroscopic Instruments 423

11.2.1 Spectrometers 423

11.2.2 Interferometers 429

11.2.3 Detectors 433

11.3 Microwave Spectroscopy 437

11.4 Infrared Spectroscopy 440

11.4.1 Infrared Spectrometers 440

11.4.2 Fourier Transform Spectroscopy 440

11.5 Laser Spectroscopy 444

11.5.1 Laser-Absorption Spectroscopy 444

11.5.2 Optoacoustic Spectroscopy 445

11.5.3 Optogalvanic Spectroscopy 447

11.5.4 Cavity-Ringdown Spectroscopy 448

11.5.5 Laser-Induced Fluorescence Spectroscopy 450

11.5.6 Ionization Spectroscopy 452

11.5.7 Laser Spectroscopy in Molecular Beams 453

11.5.8 Nonlinear Laser Spectroscopy 455

11.5.9 Saturation Spectroscopy 456

11.5.10 Doppler-Free Two-Photon Spectroscopy 459

11.6 Raman Spectroscopy 460

11.6.1 Basic Principles 460

11.6.2 Coherent Anti-Stokes Raman Spectroscopy 462

11.7 Spectroscopy with Synchrotron Radiation 463

11.8 Electron Spectroscopy 465

11.8.1 Experiments on Electron Scattering 465

11.8.2 Photoelectron Spectroscopy 467

11.8.3 ZEKE Spectroscopy 469

11.9 Measurements of Magnetic and Electric Moments in Atoms and Molecules 470

11.9.1 The Rabi-Method of Radio-Frequency Spectroscopy 471

11.9.2 Stark-Spectroscopy 473

11.10 Investigations of Atomic and Molecular Collisions 474

11.10.1 Elastic Scattering 475

11.10.2 Inelastic Scattering 478

11.10.3 Reactive Scattering 479

11.11 Time-Resolved Measurements of Atoms and Molecules 480

11.11.1 Lifetime Measurements 480

11.11.2 Fast Relaxation Processes in Atoms and Molecules 484

Summary 485

Problems 486

12.Modern Developments in Atomic and Molecular Physics 487

12.1 Optical Cooling and Trapping of Atoms 487

12.1.1 Photon Recoil 487

12.1.2 Optical Cooling of Atoms 489

12.1.3 Optical Trapping of Atoms 491

12.1.4 Bose-Einstein Condensation 493

12.1.5 Molecular Spectroscopy in a MOT 495

12.2 Time-resolved Spectroscopy in the Femtosecond Range 497

12.2.1 Time-resolved Molecular Vibrations 497

12.2.2 Femtosecond Transition State Dynamics 498

12.2.3 Coherent Control 499

12.3 Optical Metrology with New Techniques 501

12.3.1 Frequency Comb 501

12.3.2 Atomic Clocks with Trapped Ions 503

12.4 Squeezing 504

12.5 New Trends in Quantum Optics 510

12.5.1 Which Way Experiments 510

12.5.2 The Einstein-Podolski-Rosen Paradox 512

12.5.3 Schr?dinger's Cat 513

12.5.4 Entanglement and Quantum Bits 513

12.5.5 Quantum Gates 515

Summary 517

Problems 518

Chronological Table for the Development of Atomic and Molecular Physics 519

Solutions tothe Exercises 523

References 571

Subject Index 581

返回顶部