当前位置:首页 > 天文地球
空间聚类分析及应用
空间聚类分析及应用

空间聚类分析及应用PDF电子书下载

天文地球

  • 电子书积分:9 积分如何计算积分?
  • 作 者:邓敏,刘启亮,李光强等著
  • 出 版 社:北京:科学出版社
  • 出版年份:2011
  • ISBN:9787030325334
  • 页数:176 页
图书介绍:空间聚类是当前地理空间数据挖掘与知识发现的一个重要手段,已成为地理信息科学与计算机科学领域共同关注的热点问题。本书系统阐述了空间聚类分析的研究框架,主要内容包括:(1)空间聚类分析的理论框架与研究背景;(2)空间聚类分析国内外研究现状与典型算法分析;(3)空间数据探索性分析与预处理;(4)空间聚类相似性度量;(5)空间点对象聚类方法;(6)空间扩展对象与动态目标聚类方法;(7)空间聚类有效性评价。同时,结合改进的空间聚类算法研究了其具体的应用实例。
《空间聚类分析及应用》目录

第1章 绪论 1

1.1 空间聚类分析的产生 1

1.2 空间聚类分析的研究概况与基本问题 2

1.2.1 空间聚类分析的研究概况 2

1.2.2 空间聚类分析的定义 4

1.2.3 空间聚类分析的基本框架 6

1.2.4 空间聚类算法分类 8

1.3 本书研究的主要内容 8

1.4 本章小结 10

参考文献 10

第2章 空间数据清理与聚类趋势分析 14

2.1 引言 14

2.2 空间数据的基本特征与性质 14

2.2.1 空间数据的基本特征 14

2.2.2 空间数据的基本性质 15

2.3 空间数据清理 16

2.4 空间聚类趋势分析 17

2.4.1 二维空间点集聚类趋势分析 17

2.4.2 顾及专题属性的聚类趋势分析 21

2.5 本章小结 23

参考文献 23

第3章 空间相似性度量 25

3.1 引言 25

3.2 空间距离度量 25

3.2.1 空间点实体间距离度量 25

3.2.2 扩展空间实体的距离表达 28

3.3 空间实体间专题属性相似性度量 35

3.3.1 距离测度 35

3.3.2 相似性测度 36

3.3.3 匹配测度 37

3.4 本章小结 38

参考文献 39

第4章 现有空间聚类算法分析 40

4.1 引言 40

4.2 空间聚类分析的基本要求 40

4.2.1 空间数据的复杂性对聚类算法的要求 40

4.2.2 用户对空间聚类算法的要求 42

4.2.3 空间数据多尺度特性对空间聚类算法的要求 42

4.3 空间聚类算法分析 43

4.3.1 基于划分的算法 43

4.3.2 基于层次的算法 50

4.3.3 基于密度的算法 57

4.3.4 基于图论的算法 62

4.3.5 基于模型的算法 65

4.3.6 基于格网的算法 67

4.3.7 混合的算法 69

4.4 空间聚类算法性能分析 70

4.5 本章小结 71

参考文献 71

第5章 空间点实体聚类算法 75

5.1 引言 75

5.2 基于局部分布的空间聚类算法 75

5.2.1 问题描述与研究策略 75

5.2.2 算法描述 76

5.2.3 实验分析与比较 79

5.3 适应局部密度变化的空间聚类算法 81

5.3.1 问题描述与研究策略 81

5.3.2 算法描述 82

5.3.3 实验分析与比较 85

5.4 基于场论的空间聚类算法 88

5.4.1 问题描述与研究策略 88

5.4.2 算法描述 88

5.4.3 实验分析与比较 92

5.5 基于Delaunay三角网的自适应空间聚类算法 94

5.5.1 问题描述与研究策略 94

5.5.2 算法描述 94

5.5.3 实验分析与比较 100

5.6 顾及空间障碍的自适应空间聚类算法 107

5.6.1 问题描述与研究策略 107

5.6.2 算法描述 108

5.6.3 实验分析及比较 109

5.7 基于场论的层次空间聚类算法 112

5.7.1 问题描述与研究策略 112

5.7.2 算法描述 113

5.7.3 实验分析及比较 114

5.8 基于双重距离的空间聚类算法 116

5.8.1 问题描述与研究策略 116

5.8.2 算法描述 116

5.8.3 实验分析与比较 119

5.9 基于图论与密度的混合空间聚类算法 121

5.9.1 问题描述与研究策略 121

5.9.2 算法描述 122

5.9.3 实验分析与比较 126

5.10 本章小结 133

参考文献 134

第6章 建筑物与动态轨迹空间聚类方法 137

6.1 引言 137

6.2 建筑物空间聚类分析 137

6.2.1 建筑物层次约束空间聚类策略 138

6.2.2 基于旋转卡壳距离的建筑物空间聚类算法 140

6.2.3 集成集合相似性度量的建筑物空间聚类算法 143

6.3 动态轨迹空间聚类分析 148

6.3.1 动态轨迹空间聚类分析研究回顾 148

6.3.2 基于分割-分组框架的动态轨迹聚类分析算法 149

6.4 本章小结 152

参考文献 152

第7章 空间聚类有效性评价 154

7.1 引言 154

7.2 空间聚类有效性评价方法 154

7.2.1 外部评价法 155

7.2.2 内部评价法 155

7.2.3 相对评价法 156

7.3 基于力学思想的空间聚类有效性评价方法 162

7.3.1 SCV指数 163

7.3.2 算法描述 164

7.3.3 实验分析及比较 164

7.4 本章小结 168

参考文献 168

第8章 总结与展望 171

8.1 本书总结 171

8.2 研究展望 172

附录 空间聚类分析软件EasyCluster 173

返回顶部