当前位置:首页 > 工业技术
材料热力学  英文版
材料热力学  英文版

材料热力学 英文版PDF电子书下载

工业技术

  • 电子书积分:11 积分如何计算积分?
  • 作 者:蒋青,文子著
  • 出 版 社:北京:高等教育出版社
  • 出版年份:2011
  • ISBN:9787040296105
  • 页数:298 页
图书介绍:本书将材料作为一个整体研究对象,内容涵盖金属、合金、陶瓷、半导体和高分子等所有材料领域的宏观、介观和微观热力学。解释材料体系分子与材料纳米尺度性能和宏观性能之间的本质(内在)关系。揭示材料中的相和组织形成规律方面的应用,注重通过材料问题实例来使读者理解和掌握热力学的基本规律。为热力学作为解决实际材料问题的理论提供解说和线索。本书还以较大篇幅介绍了纳米热力学和界面热力学的最新进展,以及相关计算机模拟的基本知识和最新贡献。同时,强调物理基本理论对热力学的指导作用,扬弃化学热力学忽视多体效应的缺点。本书可供材料科学与工程专业的本科生、研究生和工程技术人员在学习、研究和应用中参考。
《材料热力学 英文版》目录

Chapter 1 Fundamentals of Thermodynamics 1

1.1 Thermodynamics of Materials Science,Scope and Special Features of the Book 1

1.2 Concepts of Thermodynamics 5

1.3 Temperature and Zeroth Law of Thermodynamics 10

1.4 First Law of Thermodynamics 11

1.5 Entropy and Second Law of Thermodynamics 20

1.6 General Thermodynamic Relationships 24

1.7 Third Law of Thermodynamics 32

References 34

Chapter 2 Statistical Thermodynamics 37

2.1 Basic Concepts 38

2.2 Classical Statistic Thermodynamics of Independent Particles 43

2.3 Energy Mode and Energy Levels 47

2.4 Bose-Einstein and Fermi-Dirac Statistics 52

2.5 Application of Quantum Statistics 54

2.5.1 Spatial Configuration of Long Chain Polymers 54

2.5.2 Statistical Thermodynamics of a Paramagnetic Crystal 58

2.5.3 Negative Temperature 63

References 65

Chapter 3 Heat Capacity,Entropy,and Nanothermodynamics 67

3.1 Heat Capacity 67

3.1.1 Relations of Principal Heat Capacities 67

3.1.2 Magnetic Heat Capacity 69

3.1.3 Heat Capacity of Lattice Vibration of Solids 71

3.1.4 Electronic Heat Capacity of Metals 75

3.2 Entropy 78

3.2.1 Positional Part of Melting Entropy and Its Evaluation 83

3.2.2 Contribution of Vibrational Part of Melting Entropy of Semiconductors 85

3.2.3 Electronic Component of Melting Entropy 87

3.3 Nanothermodynamics 93

3.4 Melting Thermodynamics 95

3.4.1 A Melting Criterion 95

3.4.2 Existing Models for Size-dependent Melting of Crystals 96

3.4.3 Size-dependent Melting Thermodynamics of Crystals 100

3.5 Cohesive Energy 106

3.5.1 Size-dependent Cohesive Energy of Crystals 106

3.5.2 Vacancy Formation Energy and Cohesive Energy of Clusters 108

3.6 Size Effect on Bandgap of Ⅱ-Ⅵ Semiconductor Nanocrystals 114

References 116

Chapter 4 Phase Diagrams 119

4.1 Gibbs Phase Rule and Phase Diagram of Unary System 119

4.2 Clapeyron Equation in Condensed State Equilibria 121

4.3 Solution,Partial Molar Properties and Chemical Potential 126

4.4 Graphical Representation,Ideal and Regular Solutions 129

4.5 Equilibrium Conditions of Phases and Phase Diagram of Binary Systems 135

4.5.1 Complete Miscibility,Continuous Binary Solution Phase Diagram and Related Size Dependence 136

4.5.2 Immiscibility-Two Mechanisms of Phase Transitions 140

4.6 On Approximation of Gibbs Free Energy Change of Crystallization 144

4.7 Bandgap Energy of Binary Nanosemiconductor Alloys 148

References 154

Chapter 5 Thermodynamics of Phase Transitions 157

5.1 Thermodynamic Classification of Phase Transitions 157

5.2 Landau and Ising Models for the Second-order Phase Transitions 160

5.2.1 Landau Model 160

5.2.2 Ising Model and its Applications 162

5.2.3 Critical Exponent 164

5.3 Thermodynamics of Martensitic and Bainite Transitions 166

5.4 Glass Transition 174

5.4.1 Freezing into Solid State:Glass Formation versus Crystallization 174

5.4.2 Characteristic Properties of Glass Transition 178

5.4.3 Size Effect on Glass Transition 180

5.5 Ferromagnetic and Antiferromagnetic Phase Transitions of Nanocrystals 184

5.5.1 Size-dependent Ordering Temperatures of Ferromagnetic and Antiferromagnetic Nanocrystals 184

5.5.2 Thermal Stability in Exchange-biased FM/AFM Bilayers 191

5.5.3 Ferroelectric Phase Transition of Nanocrystals 197

5.5.4 Superconductive Phase Transition of Nanocrystals 202

References 205

Chapter 6 Thermodynamics of Interfaces 207

6.1 Point Defect Thermodynamics 208

6.2 Line Defects Thermodynamics 211

6.3 Thermodynamics of Interfaces 214

6.3.1 Thermodynamic Description of Surface Free Energy of Liquids and Solids 215

6.3.2 Thermodynamics of Surface Stress and Intrinsic Stress 216

6.3.3 Real Surface:Reconstruction and Relaxation 221

6.3.4 Equilibrium of Fluid Droplets and Solid Particles 225

6.3.5 Wulff Construction and Adsorption on Solid Surfaces 229

6.4 Solid-liquid Interface Energy 232

6.4.1 Bulk Solid-liquid Interface Energy and That at Melting Points 232

6.4.2 Size Dependence of Solid-liquid Interface Energy 239

6.4.3 Nucleus-liquid Interface Energy 242

6.5 Solid-solid Interface Energy 246

6.6 Solid-vapor Interface Energy or Surface Energy 248

6.6.1 Bulk Surface Energy of Elementary Solids 248

6.6.2 γsv0 of Several Ceramics with NaCl Structure 257

6.6.3 Size-dependent Surface Energy of Solids 261

6.7 Liquid-vapor Interface Energy or Surface Tension 264

6.7.1 Bulk Surface Tension and Its Temperature Coefficient 264

6.7.2 Determination of γLv0(Tm) and γ'Lv0(Tm) Values and γLv0(T) and γ'Lv0(T) Functions 267

6.7.3 Size Dependence of Liquid-vapor Interface Energy 275

6.8 Applications of Size-dependent Interface Energy 278

6.8.1 Thermodynamic Phase Stability of Nanocarbons 278

6.8.2 Static Hysteresis of Solid Transition of CdSe Nanocrystals 284

6.8.3 Critical Layer Number and Critical Misfit of Epitaxial Grown Metallic Thin Films 287

6.8.4 Reconstruction Possibility of fcc Metallic Surfaces at Room Temperature 291

References 293

Index 295

返回顶部