代数曲线几何 第2卷 第2分册PDF电子书下载
- 电子书积分:25 积分如何计算积分?
- 作 者:(意)阿尔巴雷洛(Enrico Arbarello),Maurizio Cornalba,Phillip A.Griffiths著
- 出 版 社:北京/西安:世界图书出版公司
- 出版年份:2014
- ISBN:9787510077777
- 页数:963 页
Chapter Ⅸ.The Hilbert Scheme 1
1.Introduction 1
2.The idea of the Hilbert scheme 4
3.Flatness 12
4.Construction of the Hilbert scheme 19
5.The characteristic system 27
6.Mumford's example 40
7.Variants of the Hilbert scheme 43
8.Tangent space computations 49
9.Cn families of projective manifolds 56
10.Bibliographical notes and further reading 64
11.Exercises 65
Chapter Ⅹ.Nodal curves 79
1.Introduction 79
2.Elementary theory of nodal curves 83
3.Stable curves 99
4.Stable reduction 104
5.Isomorphisms of families of stable curves 113
6.The stable model,contraction,and projection 117
7.Clutching 126
8.Stabilization 127
9.Vanishing cycles and the Picard-Lefschetz transformation 143
10.Bibliographical notes and further reading 161
11.Exercises 161
Chapter Ⅺ.Elementary deformation theory and some applications 167
1.Introduction 167
2.Deformations of manifolds 172
3.Deformations of nodal curves 178
4.The concept of Kuranishi family 187
5.The Hilbert scheme of v-canonical curves 193
6.Construction of Kuranishi families 203
7.The Kuranishi family and continuous deformations 212
8.The period map and the local Torelli theorem 216
9.Curvature of the Hodge bundles 224
10.Deformations of symmetric products 242
11.Bibliographical notes and further reading 248
Chapter Ⅻ.The moduli space of stable curves 249
1.Introduction 249
2.Construction of moduli space as an analytic space 257
3.Moduli spaces as algebraic spaces 268
4.The moduli space of curves as an orbifold 274
5.The moduli space of curves as a stack,Ⅰ 279
6.The classical theory of descent for quasi-coherent sheaves 288
7.The moduli space of curves as a stack,Ⅱ 294
8.Deligne-Mumford stacks 299
9.Back to algebraic spaces 307
10.The universal curve,projections and clutchings 309
11.Bibliographical notes and further reading 323
12.Exercises 323
Chapter ⅩⅢ.Line bundles on moduli 329
1.Introduction 329
2.Line bundles on the moduli stack of stable curves 332
3.The tangent bundle to moduli and related constructions 344
4.The determinant of the cohomology and some applications 347
5.The Deligne pairing 366
6.The Picard group of moduli space 379
7.Mumford's formula 382
8.The Picard group of the hyperelliptic locus 387
9.Bibliographical notes and further reading 396
Chapter ⅩⅣ.Projectivity of the moduli space of stable curves 399
1.Introduction 399
2.A little invariant theory 400
3.The invariant-theoretic stability of linearly stable smooth curves 406
4.Numerical inequalities for families of stable curves 414
5.Projectivity of moduli spaces 425
6.Bibliographical notes and further reading 437
Chapter ⅩⅤ.The Teichmüller point of view 441
1.Introduction 441
2.Teichmüller space and the mapping class group 445
3.A little surface topology 453
4.Quadratic differentials and Teichmüller deformations 461
5.The geometry associated to a quadratic differential 472
6.The proof of Teichmüller's uniqueness theorem 479
7.Simple connectedness of the moduli stack of stable curves 483
8.Going to the boundary of Teichmüller space 485
9.Bibliographical notes and further reading 497
10.Exercises 498
Chapter ⅩⅥ.Smooth Galois covers of moduli spaces 501
1.Introduction 501
2.Level structures on smooth curves 508
3.Automorphisms of stable curves 515
4.Compactifying moduli of curves with level structure;a first attempt 518
5.Admissible G-covers 525
6.Automorphisms of admissible covers 536
7.Smooth covers of ?g 544
8.Totally unimodular lattices 551
9.Smooth covers of ?g,n 556
10.Bibliographical notes and further reading 562
11.Exercises 562
Chapter ⅩⅦ.Cycles in the moduli spaces of stable curves 565
1.Introduction 565
2.Algebraic cycles on quotients by finite groups 566
3.Tautological classes on moduli spaces of curves 570
4.Tautological relations and the tautological ring 573
5.Mumford's relations for the Hodge classes 585
6.Further considerations on cycles on moduli spaces 596
7.The Chow ring of ?0,P 599
8.Bibliographical notes and further reading 604
9.Exercises 605
Chapter ⅩⅧ.Cellular decomposition of moduli spaces 609
1.Introduction 609
2.The arc system complex 613
3.Ribbon graphs 616
4.The idea behind the cellular decomposition of Mg,n 623
5.Uniformization 624
6.Hyperbolic geometry 627
7.The hyperbolic spine and the definition of ? 636
8.The equivariant cellular decomposition of Teichmüller space 643
9.Stable ribbon graphs 648
10.Extending the cellular decomposition to a partial compactification of Teichmüller space 652
11.The continuity of? 655
12.Odds and ends 661
13.Bibliographical notes and further reading 665
Chapter ⅩⅨ.First consequences of the cellular decomposition 667
1.Introduction 667
2.The vanishing theorems for the rational homology of Mg,P 670
3.Comparing the cohomology of ?g,n to the one of its boundary strata 673
4.The second rational cohomology group of ?g,n 676
5.A quick overview of the stable rational cohomology of Mg,n and the computation of H1(Mg,n)and H2(Mg,n) 683
6.A closer look at the orbicell decomposition of moduli spaces 690
7.Combinatorial expression for the classes ψi 694
8.A volume computation 699
9.Bibliographical notes and further reading 708
10.Exercises 709
Chapter ⅩⅩ.Intersection theory of tautological classes 717
1.Introduction 717
2.Witten's generating series 721
3.Virasoro operators and the KdV hierarchy 726
4.The combinatorial identity 729
5.Feynman diagrams and matrix models 734
6.Kontsevich's matrix model and the equation L2Z=0 745
7.A nonvanishing theorem 750
8.A brief review of equivariant cohomology and the virtual Euler-Poincaré characteristic 754
9.The virtual Euler-Poincaré characteristic of Mg,n 759
10.A very quick tour of Gromov-Witten invariants 766
11.Bibliographical notes and further reading 771
12.Exercises 773
Chapter ⅩⅪ.Brill-Noether theory on a moving curve 779
1.Introduction 779
2.The relative Picard variety 781
3.Brill-Noether varieties on moving curves 788
4.Looijenga's vanishing theorem 796
5.The Zariski tangent spaces to the Brill-Noether varieties 802
6.The μ1 homomorphism 808
7.Lazarsfeld's proof of Petri's conjecture 814
8.The normal bundle and Horikawa's theory 819
9.Ramification 835
10.Plane curves 845
11.The Hurwitz scheme and its irreducibility 854
12.Plane curves and g?'s 863
13.Unirationality results 872
14.Bibliographical notes and further reading 879
15.Exercises 885
Bibliography 903
Index 945
- 《线性代数简明教程》刘国庆,赵剑,石玮编著 2019
- 《高等代数 下》曹重光,生玉秋,远继霞 2019
- 《线性代数及应用》蒋诗泉,叶飞,钟志水 2019
- 《线性代数》孟红玲主编 2017
- 《大学数学名师辅导系列 大学数学线性代数辅导》李永乐 2018
- 《形态学实验 组织学与胚胎学分册》郝利铭,邓香群 2018
- 《代数簇 英文版》(荷)Eduard Lo 2019
- 《科学建构 从几何模型到物理世界》(中国)江晓原 2019
- 《好玩的几何 和平面图形玩耍吧》米里亚娜·拉多万诺维奇 2019
- 《线性代数 第5版》蔡光兴,李逢高 2018
- 《星图 通往天空的旅程》(意)埃琳娜·帕西瓦迪 2019
- 《鲍勃·迪伦》(意)马克·波利佐提著洪兵译 2020
- 《阿德勒》(奥)阿尔弗雷德·阿德勒著 2019
- 《文明的衰落与复兴》张娜责编;陈维政总主编;孙林译者;(德)阿尔伯特·史怀哲 2019
- 《艺术中的经典文学形象与故事》(意)弗兰切斯卡·佩莱格里诺,(意)费代里科·皮波莱蒂 2019
- 《给演员的简单手册》(意)达里奥·福,(意)弗兰卡·拉梅(Franca Rame)著 2019
- 《大话西方艺术史》意公子著 2020
- 《量子系统的非平衡多体理论》(意)G.斯蒂芬尼茨,(德)R.冯·莱文 2019
- 《CCNA网络安全运营SECFND 210-250认证考试指南》(美)奥马尔·桑托斯(OmarSantos),约瑟夫·穆尼斯(JosephMuniz),(意) 2019
- 《牙髓病学 生物学与临床视角》(意)多米尼科·里库奇,(巴西)小约瑟·斯奎拉编;陈刚,殷欣,苏阳责编;刘贺,汪林译 2020
- 《TED说话的力量 世界优秀演讲者的口才秘诀》(坦桑)阿卡什·P.卡里亚著 2019
- 《小手画出大世界 恐龙世界》登亚编绘 2008
- 《近代世界史文献丛编 19》王强主编 2017
- 《课堂上听不到的历史传奇 世界政治军事名人 初中版》顾跃忠等编著 2015
- 《指向核心素养 北京十一学校名师教学设计 英语 七年级 上 配人教版》周志英总主编 2019
- 《365奇趣英语乐园 世界民间故事》爱思得图书国际企业 2018
- 《近代世界史文献丛编 36》王强主编 2017
- 《北京生态环境保护》《北京环境保护丛书》编委会编著 2018
- 《近代世界史文献丛编 11》王强主编 2017
- 《近代世界史文献丛编 18》王强主编 2017