张量与黎曼几何 微分方程应用PDF电子书下载
- 电子书积分:9 积分如何计算积分?
- 作 者:(瑞典)伊布拉基莫夫著
- 出 版 社:北京:高等教育出版社
- 出版年份:2015
- ISBN:9787040423853
- 页数:187 页
Part Ⅰ Tensors and Riemannian spaces 3
1 Preliminaries 3
1.1 Vectors in linear spaces 3
1.1.1 Three-dimensional vectors 3
1.1.2 General case 7
1.2 Index notation.Summation convention 9
Exercises 10
2 Conservation laws 11
2.1 Conservation laws in classical mechanics 11
2.1.1 Free fall of a body near the earth 11
2.1.2 Fall ofa body in a viscous fluid 13
2.1.3 Discussion of Kepler's laws 16
2.2 General discussion of conservation laws 20
2.2.1 Conservation laws for ODEs 20
2.2.2 Conservation laws for PDEs 21
2.3 Conserved vectors defined by symmetries 27
2.3.1 Infinitesimal symmetries of differential equations 27
2.3.2 Euler-Lagrange equations.Noether's theorem 28
2.3.3 Method of nonlinear self-adjointness 36
2.3.4 Short pulse equation 40
2.3.5 Linear equations 43
Exercises 43
3 Introduction of tensors and Riemannian spaces 45
3.1 Tensors 45
3.1.1 Motivation 45
3.1.2 Covariant and contravariant vectors 46
3.1.3 Tensor algebra 47
3.2 Riemannian spaces 49
3.2.1 Differential metric form 49
3.2.2 Geodesics.The Christoffel symbols 52
3.2.3 Covariant differentiation.The Riemann tensor 54
3.2.4 Flat spaces 55
3.3 Application to ODEs 56
Exercises 59
4 Motions in Riemannian spaces 61
4.1 Introduction 61
4.2 Isometric motions 62
4.2.1 Definition 62
4.2.2 Killing equations 62
4.2.3 Isometric motions on the plane 63
4.2.4 Maximal group of isometric motions 64
4.3 Conformal motions 65
4.3.1 Definition 65
4.3.2 Generalized Killing equations 65
4.3.3 Conformally flat spaces 66
4.4 Generalized motions 67
4.4.1 Generalized motions,their invariants and defect 68
4.4.2 Invariant family of spaces 70
Exercises 71
Part Ⅱ Riemannian spaces of second-order equations 75
5 Riemannian spaces associated with linear PDEs 75
5.1 Covariant form of second-order equations 75
5.2 Conformally invariant equations 78
Exercises 78
6 Geometry of linear hyperbolic equations 79
6.1 Generalities 79
6.1.1 Covariant form of determining equations 79
6.1.2 Equivalence transformations 80
6.1.3 Existence of conformally invariant equations 81
6.2 Spaces with nontrivial conformal group 83
6.2.1 Definition of nontrivial conformal group 83
6.2.2 Classification of four-dimensional spaces 83
6.2.3 Uniqueness theorem 86
6.2.4 On spaces with trivial conformal group 87
6.3 Standard form of second-order equations 88
6.3.1 Curved wave operator in V4 with nontrivial conformal group 88
6.3.2 Standard form of hyperbolic equations with nontrivial conformal group 90
Exercises 90
7 Solution of the initial value problem 93
7.1 The Cauchy problem 93
7.1.1 Reduction to a particular Cauchy problem 93
7.1.2 Fourier transform and solution of the particular Cauchy problem 94
7.1.3 Simplification of the solution 95
7.1.4 Verification of the solution 97
7.1.5 Comparison with Poisson's formula 99
7.1.6 Solution of the general Cauchy problem 100
7.2 Geodesics in spaces with nontrivial conformal group 100
7.2.1 Outline of the approach 101
7.2.2 Equations of geodesics in spaces with nontrivial conformal group 102
7.2.3 Solution of equations for geodesics 102
7.2.4 Computation of the geodesic distance 104
7.3 The Huygens principle 105
7.3.1 Huygens'principle for classical wave equation 106
7.3.2 Huygens'principle for the curved wave operator in V4 with nontrivial conformal group 107
7.3.3 On spaces with trivial conformal group 107
Exercises 108
Part Ⅲ Theory of relativity 111
8 Brief introduction to relativity 111
8.1 Special relativity 111
8.1.1 Space-time intervals 111
8.1.2 The Lorentz group 112
8.1.3 Relativistic principle of least action 113
8.1.4 Relativistic Lagrangian 114
8.1.5 Conservation laws in relativistic mechanics 115
8.2 The Maxwell equations 116
8.2.1 Introduction 116
8.2.2 Symmetries of Maxwell's equations 117
8.2.3 General discussion of conservation laws 119
8.2.4 Evolutionary part of Maxwell's equations 122
8.2.5 Conservation laws of Eqs.(8.2.1 )and(8.2.2 ) 129
8.3 The Dirac equation 132
8.3.1 Lagrangian obtained from the formal Lagrangian 133
8.3.2 Symmetries 134
8.3.3 Conservation laws 136
8.4 General relativity 137
8.4.1 The Einstein equations 137
8.4.2 The Schwarzschild space 138
8.4.3 Discussion of Mercury's parallax 138
8.4.4 Solutions based on generalized motions 139
Exercises 141
9 Relativity in de Sitter space 143
9.1 The de Sitter space 143
9.1.1 Introduction 143
9.1.2 Reminder of the notation 145
9.1.3 Spaces of constant Riemannian curvature 147
9.1.4 Killing vectors in spaces of constant curvature 148
9.1.5 Spaces with positive definite metric 149
9.1.6 Geometric realization of the de Sitter metric 152
9.2 The de Sitter group 153
9.2.1 Generators of the de Sitter group 153
9.2.2 Conformal transformations in R3 154
9.2.3 Inversion 156
9.2.4 Generalized translation in direction of x-axis 158
9.3 Approximate de Sitter group 158
9.3.1 Approximate groups 158
9.3.2 Simple method of solution of Killing's equations 161
9.3.3 Approximate representation of de Sitter group 163
9.4 Motion of a particle in de Sitter space 165
9.4.1 Introduction 165
9.4.2 Conservation laws in Minkowski space 166
9.4.3 Conservation laws in de Sitter space 168
9.4.4 Kepler's problem in de Sitter space 169
9.5 Curved wave operator 171
9.6 Neutrinos in de Sitter space 172
9.6.1 Two approximate representations of Dirac's equations in de Sitter space 173
9.6.2 Splitting of neutrinos by curvature 174
Exercises 175
Bibliography 177
Index 181
- 《钒产业技术及应用》高峰,彭清静,华骏主编 2019
- 《现代水泥技术发展与应用论文集》天津水泥工业设计研究院有限公司编 2019
- 《英汉翻译理论的多维阐释及应用剖析》常瑞娟著 2019
- 《数据库技术与应用 Access 2010 微课版 第2版》刘卫国主编 2020
- 《区块链DAPP开发入门、代码实现、场景应用》李万胜著 2019
- 《虚拟流域环境理论技术研究与应用》冶运涛蒋云钟梁犁丽曹引等编著 2019
- 《当代翻译美学的理论诠释与应用解读》宁建庚著 2019
- 《第一性原理方法及应用》李青坤著 2019
- 《Helmholtz方程的步进计算方法研究》李鹏著 2019
- 《教师教育系列教材 心理学原理与应用 第2版 视频版》郑红,倪嘉波,刘亨荣编;陈冬梅责编 2020
- 《中风偏瘫 脑萎缩 痴呆 最新治疗原则与方法》孙作东著 2004
- 《水面舰艇编队作战运筹分析》谭安胜著 2009
- 《王蒙文集 新版 35 评点《红楼梦》 上》王蒙著 2020
- 《TED说话的力量 世界优秀演讲者的口才秘诀》(坦桑)阿卡什·P.卡里亚著 2019
- 《燕堂夜话》蒋忠和著 2019
- 《经久》静水边著 2019
- 《魔法销售台词》(美)埃尔默·惠勒著 2019
- 《微表情密码》(波)卡西亚·韦佐夫斯基,(波)帕特里克·韦佐夫斯基著 2019
- 《看书琐记与作文秘诀》鲁迅著 2019
- 《酒国》莫言著 2019
- 《全国高等中医药行业“十三五”创新教材 中医药学概论》翟华强 2019
- 《培智学校义务教育实验教科书教师教学用书 生活适应 二年级 上》人民教育出版社,课程教材研究所,特殊教育课程教材研究中心编著 2019
- 《指向核心素养 北京十一学校名师教学设计 英语 七年级 上 配人教版》周志英总主编 2019
- 《习近平总书记教育重要论述讲义》本书编写组 2020
- 《办好人民满意的教育 全国教育满意度调查报告》(中国)中国教育科学研究院 2019
- 《高等数学试题与详解》西安电子科技大学高等数学教学团队 2019
- 《北京生态环境保护》《北京环境保护丛书》编委会编著 2018
- 《教育学考研应试宝典》徐影主编 2019
- 《语文教育教学实践探索》陈德收 2018
- 《家庭音乐素养教育》刘畅 2018