小波分析导论 英文PDF电子书下载
- 电子书积分:14 积分如何计算积分?
- 作 者:(美)瓦尔纳著
- 出 版 社:北京/西安:世界图书出版公司
- 出版年份:2011
- ISBN:7510037610
- 页数:450 页
Ⅰ Preliminaries 1
1 Functions and Convergence 3
1.1 Functions 3
1.1.1 Bounded(L∞)Functions 3
1.1.2 Integrable(L1)Functions 3
1.1.3 Square Integrable(L2)Functions 6
1.1.4 Differentiable(Cn)Functions 9
1.2 Convergence of Sequences of Functions 11
1.2.1 Numerical Convergence 11
1.2.2 Pointwise Convergence 13
1.2.3 Uniform(L∞)Convergence 14
1.2.4 Mean(L1)Convergence 17
1.2.5 Mean-square(L2)Convergence 19
1.2.6 Interchange of Limits and Integrals 21
2 Fourier Series 27
2.1 Trigonometric Series 27
2.1.1 Periodic Functions 27
2.1.2 The Trigonometric System 28
2.1.3 The Fourier Coefficients 30
2.1.4 Convergence of Fourier Series 32
2.2 Approximate Identities 37
2.2.1 Motivation from Fourier Series 38
2.2.2 Definition and Examples 40
2.2.3 Convergence Theorems 42
2.3 Generalized Fourier Series 47
2.3.1 Orthogonality 47
2.3.2 Generalized Fourier Series 49
2.3.3 Completeness 52
3 The Fourier Transform 59
3.1 Motivation and Definition 59
3.2 Basic Properties of the Fourier Transform 63
3.3 Fourier Inversion 65
3.4 Convolution 68
3.5 Plancherel's Formula 72
3.6 The Fourier Transform for L2 Functions 75
3.7 Smoothness versus Decay 76
3.8 Dilation,Translation,and Modulation 79
3.9 Bandlimited Functions and the Sampling Formula 81
4 Signals and Systems 87
4.1 Signals 88
4.2 Systems 90
4.2.1 Causality and Stability 95
4.3 Periodic Signals and the Discrete Fourier Transform 101
4.3.1 The Discrete Fourier Transform 102
4.4 The Fast Fourier Transform 107
4.5 L2 Fourier Series 109
Ⅱ The Haar System 113
5 The Haar System 115
5.1 Dyadic Step Functions 115
5.1.1 The Dyadic Intervals 115
5.1.2 The Scale j Dyadic Step Functions 116
5.2 The Haar System 117
5.2.1 The Haar Scaling Functions and the Haar Functions 117
5.2.2 Orthogonality of the Haar System 118
5.2.3 The Splitting Lemma 120
5.3 Haar Bases on[0,1] 122
5.4 Comparison of Haar Series with Fourier Series 127
5.4.1 Representation of Functions with Small Support 128
5.4.2 Behavior of Haar Coefficients Near Jump Discontinuities 130
5.4.3 Haar Coefficients and Global Smoothness 132
5.5 Haar Bases on R 133
5.5.1 The Approximation and Detail Operators 134
5.5.2 The Scale J Haar System on R 138
5.5.3 The Haar System on R 138
6 The Discrete Haar Transform 141
6.1 Motivation 141
6.1.1 The Discrete Haar Transform(DHT) 142
6.2 The DHT in Two Dimensions 146
6.2.1 The Row-wise and Column-wise Approximations and Details 146
6.2.2 The DHT for Matrices 147
6.3 Image Analysis with the DHT 150
6.3.1 Approximation and Blurring 151
6.3.2 Horizontal,Vertical,and Diagonal Edges 153
6.3.3 "Naive"Image Compression 154
Ⅲ Orthonormal Wavelet Bases 161
7 Multiresolution Analysis 163
7.1 Orthonormal Systems of Translates 164
7.2 Definition of Multiresolution Analysis 169
7.2.1 Some Basic Properties of MRAs 170
7.3 Examples of Multiresolution Analysis 174
7.3.1 The Haar MRA 174
7.3.2 The Piecewise Linear MRA 174
7.3.3 The Bandlimited MRA 179
7.3.4 The Meyer MRA 180
7.4 Construction and Examples of Orthonormal Wavelet Bases 185
7.4.1 Examples of Wavelet Bases 186
7.4.2 Wavelets in Two Dimensions 190
7.4.3 Localization of Wavelet Bases 193
7.5 Proof of Theorem 7.35 196
7.5.1 Sufficient Conditions for a Wavelet Basis 197
7.5.2 Proof of Theorem 7.35 199
7.6 Necessary Properties of the Scaling Function 203
7.7 General Spline Wavelets 206
7.7.1 Basic Properties of Spline Functions 206
7.7.2 Spline Multiresolution Analyses 208
8 The Discrete Wavelet Transform 215
8.1 Motivation:From MRA to a Discrete Transform 215
8.2 The Quadrature Mirror Filter Conditions 218
8.2.1 Motivation from MRA 218
8.2.2 The Approximation and Detail Operators and Their Adjoints 221
8.2.3 The Quadrature Mirror Filter(QMF)Conditions 223
8.3 The Discrete Wavelet Transform(DWT) 231
8.3.1 The DWT for Signals 231
8.3.2 The DWT for Finite Signals 231
8.3.3 The DWT as an Orthogonal Transformation 232
8.4 Scaling Functions from Scaling Sequences 236
8.4.1 The Infinite Product Formula 237
8.4.2 The Cascade Algorithm 243
8.4.3 The Support of the Scaling Function 245
9 Smooth,Compactly Supported Wavelets 249
9.1 Vanishing Moments 249
9.1.1 Vanishing Moments and Smoothness 250
9.1.2 Vanishing Momens and Approximation 254
9.1.3 Vanishing Moments and the Reproduction of Polynomials 257
9.1.4 Equivalent Conditions for Vanishing Moments 260
9.2 The Daubechies Wavelets 264
9.2.1 The Daubechies Polynomials 264
9.2.2 Spectral Factorization 269
9.3 Image Analysis with Smooth Wavelets 277
9.3.1 Approximation and Blurring 278
9.3.2 "Naive"Image Compression with Smooth Wavelets 278
Ⅳ Other Wavelet Constructions 287
10 Biorthogonal Wavelets 289
10.1 Linear Independence and Biorthogonality 289
10.2 Riesz Bases and the Frame Condition 290
10.3 Riesz Bases of Translates 293
10.4 Generalized Multiresolution Analysis(GMRA) 300
10.4.1 Basic Properties of GMRA 301
10.4.2 Dual GMRA and Riesz Bases of Wavelets 302
10.5 Riesz Bases Orthogonal Across Scales 311
10.5.1 Example:The Piecewise Linear GMRA 313
10.6 A Discrete Transform for Biorthogonal Wavelets 315
10.6.1 Motivation from GMRA 315
10.6.2 The QMF Conditions 317
10.7 Compactly Supported Biorthogonal Wavelets 319
10.7.1 Compactly Supported Spline Wavelets 320
10.7.2 Symmetric Biorthogonal Wavelets 324
10.7.3 Using Symmetry in the DWT 328
11 Wavelet Packets 335
11.1 Motivation:Completing the Wavelet Tree 335
11.2 Localization of Wavelet Packets 337
11.2.1 Time/Spatial Localization 337
11.2.2 Frequency Localization 338
11.3 Orthogonality and Completeness Properties of Wavelet Packets 346
11.3.1 Wavelet Packet Bases with a Fixed Scale 347
11.3.2 Wavelet Packets with Mixed Scales 350
11.4 The Discrete Wavelet Packet Transform(DWPT) 354
11.4.1 The DWPT for Signals 354
11.4.2 The DWPT for Finite Signals 354
11.5 The Best-Basis Algorithm 357
11.5.1 The Discrete Wavelet Packet Library 357
11.5.2 The Idea of the Best Basis 360
11.5.3 Description of the Algorithm 363
Ⅴ Applications 369
12 Image Compression 371
12.1 The Transform Step 372
12.1.1 Wavelets or Wavelet Packets? 372
12.1.2 Choosing a Filter 373
12.2 The Quantization Step 373
12.3 The Coding Step 375
12.3.1 Sources and Codes 376
12.3.2 Entropy and Information 378
12.3.3 Coding and Compression 380
12.4 The Binary Huffman Code 385
12.5 A Model Wavelet Transform Image Coder 387
12.5.1 Examples 388
13 Integral Operators 397
13.1 Examples of Integral Operators 397
13.1.1 Sturm-Liouville Boundary Value Problems 397
13.1.2 The Hilbert Transform 402
13.1.3 The Radon Transform 406
13.2 The BCR Algorithm 414
13.2.1 The Scale j Approximation to T 415
13.2.2 Description of the Algorithm 418
Ⅵ Appendixes 423
A Review of Advanced Calculus and Linear Algebra 425
A.1 Glossary of Basic Terms from Advanced Calculus and Linear Algebra 425
A.2 Basic Theorems from Advanced Calculus 431
B Excursions in Wavelet Theory 433
B.1 Other Wavelet Constructions 433
B.1.1 M-band Wavelets 433
B.1.2 Wavelets with Rational Noninteger Dilation Factors 434
B.1.3 Local Cosine Bases 434
B.1.4 The Continuous Wavelet Transform 435
B.1.5 Non-MRA Wavelets 436
B.1.6 Multiwavelets 436
B.2 Wavelets in Other Domains 437
B.2.1 Wavelets on Intervals 437
B.2.2 Wavelets in Higher Dimensions 438
B.2.3 The Lifting Scheme 438
B.3 Applications of Wavelets 439
B.3.1 Wavelet Denoising 439
B.3.2 Multiscale Edge Detection 439
B.3.3 The FBI Fingerprint Compression Standard 439
C References Cited in the Text 441
Index 445
- 《水面舰艇编队作战运筹分析》谭安胜著 2009
- 《分析化学》陈怀侠主编 2019
- 《影响葡萄和葡萄酒中酚类特征的因素分析》朱磊 2019
- 《仪器分析技术 第2版》曹国庆 2018
- 《物联网导论》张翼英主编 2020
- 《全国普通高等中医药院校药学类专业十三五规划教材 第二轮规划教材 分析化学实验 第2版》池玉梅 2018
- 《材料导论》张会主编 2019
- 《化工传递过程导论 第2版》阎建民,刘辉 2020
- 《Power BI数据清洗与可视化交互式分析》陈剑 2020
- 《行测资料分析》李永新主编 2019
- 《TED说话的力量 世界优秀演讲者的口才秘诀》(坦桑)阿卡什·P.卡里亚著 2019
- 《小手画出大世界 恐龙世界》登亚编绘 2008
- 《近代世界史文献丛编 19》王强主编 2017
- 《课堂上听不到的历史传奇 世界政治军事名人 初中版》顾跃忠等编著 2015
- 《指向核心素养 北京十一学校名师教学设计 英语 七年级 上 配人教版》周志英总主编 2019
- 《365奇趣英语乐园 世界民间故事》爱思得图书国际企业 2018
- 《近代世界史文献丛编 36》王强主编 2017
- 《北京生态环境保护》《北京环境保护丛书》编委会编著 2018
- 《近代世界史文献丛编 11》王强主编 2017
- 《近代世界史文献丛编 18》王强主编 2017