当前位置:首页 > 工业技术
计算数论与现代密码学  英文版
计算数论与现代密码学  英文版

计算数论与现代密码学 英文版PDF电子书下载

工业技术

  • 电子书积分:14 积分如何计算积分?
  • 作 者:颜松远著
  • 出 版 社:北京:高等教育出版社
  • 出版年份:2013
  • ISBN:9787040344714
  • 页数:419 页
图书介绍:数论和密码学是两个不同的学科,且分属于不同的研究领域,而现代公钥密码体制的创立和应用则将这两个不同的学科紧密地联系在一起。这是因为这些密码体制的安全性几乎完全基于某些数论问题的难解性。比如极富盛誉的RSA密码体制之所以难以破译,就是因为整数分解问题难以快速解决。本书首先从计算理论的观点介绍数论中一些难解性问题,如整数分解问题和离散对数问题(包括椭圆曲线离散对数问题),然后讨论基于这些难解性问题的现代公钥密码体制,最后讨论这些难解性问题的量子计算方法以及这些密码体制的量子攻击方法;由于量子计算仅适合于快速解决某些难解性数论问题(并非所有难解性的数论及数学问题),因此还讨论了某些量子计算鞭长莫及的数学问题以及基于这些问题的抗量子密码体制。此外,书中还配有大量实例和练习,便于读者学习和掌握。本书可作为高等学校计算机、信息安全、电子与通信工程、数学等专业高年级本科生和研究生的教材,也可作为相关领域研究人员的参考书。颜松远,美国麻省理工学院和英国贝德福特大学教授,出版英文专著6部,其中《Number Theory for Computing》已有3种语言版本,《Cryptanalytic Att
《计算数论与现代密码学 英文版》目录

Part Ⅰ Preliminaries 3

1 Introduction 3

1.1 What is Number Theory? 3

1.2 What is Computation Theory? 9

1.3 What is Computational Number Theory? 15

1.4 What is Modern Cryptography? 29

1.5 Bibliographic Notes and Further Reading 32

References 32

2 Fundamentals 35

2.1 Basic Algebraic Structures 35

2.2 Divisibility Theory 46

2.3 Arithmetic Functions 75

2.4 Congruence Theory 89

2.5 Primitive Roots 131

2.6 Elliptic Curves 141

2.7 Bibliographic Notes and Further Reading 154

References 155

Part Ⅱ Computational Number Theory 159

3 Primality Testing 159

3.1 BasicTests 159

3.2 Miller-Rabin Test 168

3.3 Elliptic Curve Tests 173

3.4 AKS Test 178

3.5 Bibliographic Notes and Further Reading 187

References 188

4 Integer Factorization 191

4.1 Basic Concepts 191

4.2 Trial Divisions Factoring 194

4.3 ρ and P-1 Methods 198

4.4 Elliptic Curve Method 205

4.5 Continued Fraction Method 209

4.6 Quadratic Sieve 214

4.7 Number Field Sieve 219

4.8 Bibliographic Notes and Further Reading 231

References 232

5 Discrete Logarithms 235

5.1 Basic Concepts 235

5.2 Baby-Step Giant-Step Method 237

5.3 Pohlig-Hellman Method 240

5.4 Index Calculus 246

5.5 Elliptic Curve Discrete Logarithms 251

5.6 Bibliographic Notes and Further Reading 260

References 261

Part Ⅲ Modern Cryptography 265

6 Secret-Key Cryptography 265

6.1 Cryptography and Cryptanalysis 265

6.2 Classic Secret-Key Cryptography 277

6.3 Modern Secret-Key Cryptography 285

6.4 Bibliographic Notes and Further Reading 291

References 291

7 Integer Factorization Based Cryptography 293

7.1 RSA Cryptography 293

7.2 Cryptanalysis of RSA 302

7.3 Rabin Cryptography 319

7.4 Residuosity Based Cryptography 326

7.5 Zero-Knowledge Proof 331

7.6 Bibliographic Notes and Further Reading 335

References 335

8 Discrete Logarithm Based Cryptography 337

8.1 Diffie-Hellman--Merkle Key-Exchange Protocol 337

8.2 E1Gamal Cryptography 342

8.3 Massey-Omura Cryptography 344

8.4 DLP-Based Digital Signatures 348

8.5 Bibliographic Notes and Further Reading 351

References 351

9 Elliptic Curve Discrete Logarithm Based Cryptography 353

9.1 Basic Ideas 353

9.2 Elliptic Curve Diffie-Hellman-Merkle Key Exchange Scheme 356

9.3 Elliptic Curve Massey-Omura Cryptography 360

9.4 Elliptic Curve ElGamal Cryptography 365

9.5 Elliptic Curve RSA Cryptosystem 370

9.6 Menezes-Vanstone Elliptic Curve Cryptography 371

9.7 Elliptic Curve DSA 373

9.8 Bibliographic Notes and Further Reading 374

References 375

Part Ⅳ Quantum Resistant Cryptography 379

10 Quantum Computational Number Theory 379

10.1 Quantum Algorithms for Order Finding 379

10.2 Quantum Algorithms for Integer Factorization 385

10.3 Quantum Algorithms for Discrete Logarithms 390

10.4 Quantum Algorithms for Elliptic Curve Discrete Logarithms 393

10.5 Bibliographic Notes and Further Reading 397

References 397

11 Quantum Resistant Cryptography 401

11.1 Coding-Based Cryptography 401

11.2 Lattice-Based Cryptography 403

11.3 Quantum Cryptography 404

11.4 DNA Biological Cryptography 406

11.5 Bibliographic Notes and Further Reading 409

References 410

Index 413

返回顶部