当前位置:首页 > 数理化
纯粹数学与应用数学专著  典藏版  第24号  微分动力系统的定性理论
纯粹数学与应用数学专著  典藏版  第24号  微分动力系统的定性理论

纯粹数学与应用数学专著 典藏版 第24号 微分动力系统的定性理论PDF电子书下载

数理化

  • 电子书积分:12 积分如何计算积分?
  • 作 者:廖山涛著
  • 出 版 社:北京:科学出版社
  • 出版年份:2018
  • ISBN:7030557544
  • 页数:317 页
图书介绍:
上一篇:数学思维下一篇:有机化学
《纯粹数学与应用数学专著 典藏版 第24号 微分动力系统的定性理论》目录

第1章 紧致微分流形上常微分方程系统的某类诸态备经性质 1

1.1 某些在标架丛上的单参数变换群 2

1.2 共变微商,函数wk(α) 6

1.3 函数log?αk(t) 10

1.4 格数k*(F) 14

1.5 关于格数的判定方式 26

1.6 某类函数的比较 35

1.7 格数退化的3维常微系统 44

1.8 方阵Rα(t)及发散量divS 49

参考文献 55

第2章 典范方程组 56

2.1 典范方程组的回顾 58

2.2 另一类典范方程组 69

2.3 常微方程族?p 100

2.4 一个应用 121

参考文献 137

第3章 阻碍集与强匀断条件 139

3.1 引言 139

3.2 阻碍集Ob(S) 140

3.3 结果的叙述 141

3.4 槽点集合 145

参考文献 147

第4章 阻碍集(Ⅰ) 148

4.1 槽点集合 150

4.2 阻碍集Ob(S) 161

4.3 奇点 167

4.4 正常集的线性理论 172

4.5 正常集的线性理论(续) 189

参考文献 201

第5章 关于稳定性推测 203

5.1 引言和主要结果的叙述 203

5.2 常微系统族?*(Mn) 204

5.3 可缩周期轨道 205

5.4 S∈?*(M3)情形 210

5.5 “筛滤”引理和定理4.1的证明 216

5.6 定理1.1和1.2的证明 223

参考文献 226

第6章 阻碍集(Ⅱ) 228

6.1 引言 228

6.2 阻碍集与极小歧变集 230

6.3 简单极小歧变集 233

6.4 集合M(?,?;p)与S∈?*的扭拆集R(ζ,p)∪L(ζ,p) 241

6.5 S∈?*的非简单极小歧变集与定理1.1及1.2的证明 253

6.6 关于集合R(ζ,p)及L(ζ,p) 269

参考文献 273

第7章 典范微分方程组和阻碍集及对于结构稳定性问题的应用 275

7.1 常微系统的整体线性化与线性表达式 275

7.2 典范方程组 278

7.3 低一维的约化 280

7.4 应用例子 283

7.5 常微系统族?* 287

7.6 阻碍集 288

7.7 简单与非简单极小歧变集 291

7.8 Ω稳定性和结构稳定性 293

参考文献 296

第8章 关于结构稳定的特征性质 298

8.1 引言 298

8.2 预备.阻碍集与极小歧变集 298

8.3 关键步骤 300

8.4 应用 301

参考文献 302

附录 304

参考文献 313

编后记 315

相关图书
作者其它书籍
返回顶部