2007硕士学位研究生入学资格考试 数学考前辅导教程PDF电子书下载
- 电子书积分:12 积分如何计算积分?
- 作 者:刘庆华主编
- 出 版 社:北京:清华大学出版社
- 出版年份:2007
- ISBN:7302150192
- 页数:301 页
第1部分 算术 1
第1章 算术 1
1.1数的概念、性质和运算 1
1数的概念 1
2数的整除 1
3数的四则运算 2
4比和比例 2
1.2应用问题举例 3
1整数和小数四则运算应用题 3
2分数与百分数应用题 7
3简单方程应用题 9
4比和比例应用题 10
1.3典型例题 12
第2部分 初等代数 25
第2章 数和代数式 25
2.1实数和复数 25
1实数、数轴 25
2实数的运算 26
3复数 26
2.2代数式及其运算 28
1整式及其加法与乘法 28
2因式分解 28
3整式的除法 29
4分式 30
5根式 31
2.3典型例题 32
第3章 集合、映射和函数 35
3.1集合 35
1集合的概念 35
2集合的包含关系 36
3集合的基本运算 36
3.2映射和函数 37
1映射的概念 37
2函数 37
3反函数 39
4函数的单调性、奇偶性和周期性 39
5幂函数、指数函数和对数函数 40
3.3典型例题 43
第4章 代数方程和简单的超越方程 46
4.1概念 46
4.2一元一次方程 46
4.3二元一次方程组 46
4.4一元二次方程的性质 48
1判别式 48
2根和系数的关系 48
3二次函数的图像和一元二次方程的根 48
4.5解一元代数方程 50
1配方法 50
2公式法 50
3分解因式法 50
4.6根的范围、方程的变换 51
1确定根所属的区间 51
2方程的变换 52
4.7典型例题 53
第5章 不等式 56
5.1不等式的概念和性质 56
1不等式的概念 56
2不等式的基本性质 56
3基本的不等式 56
4解不等式 57
5.2解含绝对值的不等式 57
5.3解一元二次不等式 58
5.4利用函数的性质和图像解不等式 60
5.5典型例题 61
第6章 数列、数学归纳法 64
6.1数列的基本概念 64
6.2等差数列 66
6.3等比数列 68
6.4数学归纳法 70
6.5典型例题 70
第7章 排列、组合、二项式定理和古典概率 75
7.1排列和组合 75
1基本概念 75
2排列数和组合数公式 75
3例题 76
7.2二项式定理 78
7.3古典概率问题 79
1基本概念 79
2等可能事件的概率 80
3互斥事件有一个发生的概率 82
4相互独立事件同时发生的概率 82
5独立重复试验 83
7.4典型例题 84
第3部分 几何与三角 88
第8章 常见几何图形 88
8.1常见平面几何图形 88
1三角形 88
2四边形 89
3圆和扇形 90
4平面图形的全等和相似关系 90
8.2常见空间几何图形 92
1长方体 92
2圆柱体 92
3正圆锥体 92
4球 93
8.3典型例题 94
第9章 三角学的基本知识 102
9.1三角函数 102
1角和三角函数 102
2同角三角函数的关系 103
3诱导公式 103
4三角函数的图像和性质 104
5例题 105
9.2两角和与差的三角函数 106
1两角和与差公式 106
2倍角与半角公式 106
3例题 106
9.3解斜三角形 107
9.4反三角函数 108
9.5典型例题 110
第10章 平面解析几何 114
10.1平面向量 114
1基本概念 114
2向量的加法与数乘 114
3向量的内积 115
4有向线段的定比分点 116
10.2直线 117
1直线的方向向量、倾斜角和斜率 117
2直线的方程 117
3两条直线的位置关系 118
10.3圆 121
10.4椭圆 122
10.5双曲线 123
10.6抛物线 124
10.7例题 125
10.8典型例题 125
第4部分 一元函数微积分 130
第11章 极限与连续 130
11.1函数及其特性 130
1函数的定义 130
2函数的特性 130
3复合函数与初等函数 132
11.2数列的极限 133
1数列的极限 133
2数列极限的四则运算 133
11.3函数的极限 134
1函数极限的定义 134
2函数极限的性质 135
3函数极限的运算法则 135
4两个重要极限 136
11.4无穷小量与无穷大量 138
1无穷小量与无穷大量的定义 138
2无穷小量与无穷大量的关系 139
3无穷小量与函数极限的关系 139
4无穷小量的性质 139
5无穷小量的比较 139
6等价无穷小量替换定理 140
11.5函数的连续性 141
1连续的定义 141
2函数间断点及分类 142
3连续函数的运算法则 142
4连续函数在闭区间上的性质 142
11.6典型例题 143
第12章 一元函数微分学 148
12.1导数的概念 148
1导数的定义 148
2导数的几何意义 150
3可导性与连续性的关系 150
12.2导数公式与求导法则 151
1导数公式 151
2四则运算的求导法则 152
3复合函数的求导法则 153
12.3高阶导数 155
12.4微分 157
1微分的定义 157
2微分与导数的关系 157
3微分的几何意义 157
4微分基本公式和四则运算法则 157
12.5中值定理 159
1罗尔定理 159
2拉格朗日中值定理 159
12.6洛必达法则 160
12.7函数的单调性与极值 163
1函数单调性的判定法 163
2函数的极值及判断 164
12.8函数的最大值、最小值问题 166
12.9曲线的凹凸、拐点及渐近线 167
1曲线的凹凸、拐点 167
2曲线的渐近线 169
12.10典型例题 169
第13章 一元函数积分学 179
13.1不定积分的概念和简单的计算 179
1原函数、不定积分的概念 179
2不定积分基本计算公式 179
3不定积分的性质 180
13.2不定积分的计算方法 181
1第一类换元法(凑微分法) 181
2第二类换元法 183
3分部积分法 185
13.3定积分的概念及性质 187
1定积分的概念 187
2定积分的几何意义 188
3定积分的性质 188
13.4微积分基本公式、定积分的计算 191
1牛顿-莱布尼茨公式 191
2变量替换法 191
3分部积分法 192
13.5定积分的应用 196
1平面图形的面积 196
2旋转体体积 196
13.6典型例题 197
第5部分 线性代数 207
第14章 行列式 207
14.1行列式的概念与性质 207
1行列式的定义 207
2行列式的性质 208
3几个特殊的行列式 210
14.2行列式的计算 211
14.3典型例题 214
第15章 矩阵 219
15.1矩阵及其运算 219
1矩阵的概念 219
2矩阵的运算 220
3方阵的行列式 224
4特殊矩阵 224
15.2可逆矩阵 225
1可逆矩阵与逆矩阵的概念 225
2矩阵可逆的充要条件 226
3可逆矩阵的性质 227
15.3矩阵的初等变换 229
1初等变换 229
2用初等变换求可逆矩阵的逆矩阵 230
15.4矩阵的秩 232
1矩阵的秩的概念 232
2矩阵的秩的计算 232
3矩阵运算后秩的变化 233
15.5典型例题 234
第16章向量 242
16.1n维向量 242
1n维向量的定义 242
2n维向量的线性运算 242
16.2向量组的线性相关性 244
1向量的线性组合与线性表出 244
2向量组的线性相关与线性无关 245
3其他几个有关的结论 247
16.3向量组的秩 248
1向量组的秩和最大线性无关组 248
2向量组的秩和矩阵的秩的关系 249
16.4典型例题 251
第17章 线性方程组 257
17.1线性方程组的基本概念 257
1非齐次线性方程组 257
2齐次线性方程组 258
17.2求解齐次线性方程组 258
1齐次线性方程组有非零解的条件 258
2齐次线性方程组解的性质 258
3齐次线性方程组解的结构、基础解系 259
4消元法解齐次线性方程组 259
17.3求解非齐次线性方程组 262
1非齐次线性方程组有解的条件 262
2非齐次线性方程组解的性质和结构 262
3消元法解非齐次线性方程组 263
17.4典型例题 266
第18章 矩阵的特征值和特征向量 272
18.1特征值和特征向量的基本概念 272
1特征值和特征向量的定义 272
2特征值和特征向量的计算 272
3特征值和特征向量的性质 274
18.2矩阵的相似对角化问题 276
1相似矩阵的定义 276
2相似矩阵的性质 276
3矩阵对角化的条件和方法 278
18.3典型例题 281
模拟试题(1) 288
模拟试题(2) 292
模拟试题答案 296
附录1初等数学中的一些重要公式 297
附录2微积分中的一些常用公式 300
- 《MBA大师.2020年MBAMPAMPAcc管理类联考专用辅导教材 数学考点精讲》(中国)董璞 2019
- 《党员干部理论学习培训教材 理论热点问题党员干部学习辅导》(中国)胡磊 2018
- 《21世纪法学系列教材 配套辅导用书 行政法与行政诉讼法练习题集 第5版》李元起主编 2018
- 《国家执业药师考试历年真题试卷全解 2015-2019 中药学专业知识 1》黄坤主编 2020
- 《中学物理奥赛辅导:热学 光学 近代物理学》崔宏滨 2012
- 《2019国家医师资格考试用书 中医执业助理医师资格考试全真模拟试卷与解析 第3版》国家医师资格考试研究组 2019
- 《2014年全新版浙江省人事考试参考用书 申论》曹文彪 2013
- 《国家教师资格考试辅导教材 思维导图全解 教育教学知识与能力 小学》师大教科文教材编写组 2020
- 《高中英语词汇考试指导》徐志江编著 2019
- 《英国皇家舞蹈学院舞蹈等级考试教材 组合与舞蹈 四级》陈婷译 2019
- 《大学计算机实验指导及习题解答》曹成志,宋长龙 2019
- 《指向核心素养 北京十一学校名师教学设计 英语 七年级 上 配人教版》周志英总主编 2019
- 《大学生心理健康与人生发展》王琳责任编辑;(中国)肖宇 2019
- 《大学英语四级考试全真试题 标准模拟 四级》汪开虎主编 2012
- 《大学英语教学的跨文化交际视角研究与创新发展》许丽云,刘枫,尚利明著 2020
- 《北京生态环境保护》《北京环境保护丛书》编委会编著 2018
- 《复旦大学新闻学院教授学术丛书 新闻实务随想录》刘海贵 2019
- 《大学英语综合教程 1》王佃春,骆敏主编 2015
- 《大学物理简明教程 下 第2版》施卫主编 2020
- 《指向核心素养 北京十一学校名师教学设计 英语 九年级 上 配人教版》周志英总主编 2019