应用数学PDF电子书下载
- 电子书积分:11 积分如何计算积分?
- 作 者:刘学才,周文主编
- 出 版 社:武汉:华中科技大学出版社
- 出版年份:2007
- ISBN:9787560942063
- 页数:271 页
第1章 函数、极限与连续 1
1.1 函数 1
1.1.1 区间和邻域 1
1.1.2 函数的概念 2
1.1.3 函数的几种特性 5
1.1.4 反函数 7
习题1.1 7
1.2 初等函数 8
1.2.1 基本初等函数 8
1.2.2 复合函数 10
1.2.3 初等函数 11
1.2.4 经济学中常用的函数 12
习题1.2 14
1.3 数列的极限 15
1.3.1 数列极限的定义 15
1.3.2 收敛数列的性质 17
1.3.3 数列极限的运算法则 17
习题1.3 19
1.4 函数的极限 19
1.4.1 当x→∞时,函数f(x)的极限 19
1.4.2 当x→x0时,函数f(x)的极限 21
1.4.3 函数极限的性质 23
习题1.4 23
1.5 函数极限的运算法则 两个重要极限 24
1.5.1 函数极限的四则运算法则 24
1.5.2 极限存在准则 25
1.5.3 两个重要极限 26
习题1.5 27
1.6 无穷小与无穷大 28
1.6.1 无穷小 28
1.6.2 无穷大 29
1.6.3 无穷小的比较 30
习题1.6 32
1.7 函数的连续性 33
1.7.1 函数连续性的概念 33
1.7.2 初等函数的连续性 37
1.7.3 闭区间上连续函数的性质 38
习题1.7 40
1.8 Matlab初步及函数与极限的Matlab操作 41
1.8.1 Matlab初步 41
1.8.2 Matlab语句 44
1.8.3 函数与方程的Matlab操作 47
1.8.4 求极限的Matlab操作 49
1.8.5 上机实验 50
[阅读材料]数学建模简介 50
本章小结 53
复习参考题 56
第2章 一元函数微分学 58
2.1 导数的概念 58
2.1.1 导数概念的引入 58
2.1.2 导数的定义 59
2.1.3 导数的几何意义 62
2.1.4 导数与连续的关系 63
2.1.5 高阶导数 64
习题2.1 64
2.2 导数的运算 65
2.2.1 导数的四则运算 65
2.2.2 反函数的求导法则 67
2.2.3 复合函数的求导法则 68
习题2.2 70
2.3 隐函数的导数 由参数方程所确定的函数的导数 71
2.3.1 隐函数的求导法则 71
2.3.2 参数方程求导法则 74
习题2.3 75
2.4 函数的微分 76
2.4.1 微分的概念 76
2.4.2 微分的几何意义 78
2.4.3 微分的运算法则与公式 78
2.4.4 微分的应用 79
习题2.4 80
2.5 微分(导数)的Matlab操作 81
2.5.1 函数简介 81
2.5.2 上机实验 83
[阅读材料]无穷小量是逝去量的鬼魂吗? 83
本章小结 84
复习参考题 86
第3章 导数应用 88
3.1 拉格朗日中值定理洛必达法则 88
3.1.1 拉格朗日中值定理 88
3.1.2 洛必达法则 89
习题3.1 92
3.2 函数的单调性及其极值 93
3.2.1 函数的单调性 93
3.2.2 函数的极值及其求法 94
习题3.2 97
3.3 函数的最大值和最小值 98
习题3.3 100
3.4 曲线的凹凸性与拐点 函数图像的描绘 101
3.4.1 曲线的凹凸性与拐点 101
3.4.2 函数图像的描绘 103
习题3.4 106
3.5 导数在经济中的应用 106
3.5.1 边际分析 106
3.5.2 弹性分析 108
习题3.5 109
3.6 曲率 110
3.6.1 弧微分 110
3.6.2 曲率概念 111
3.6.3 曲率圆与曲率半径 112
习题3.6 114
3.7 微分学应用的Matlab的操作 115
3.7.1 求极值 115
3.7.2 绘图 115
3.7.3 上机实验 117
[阅读材料]牛顿 117
本章小结 119
复习参考题 120
第4章 一元函数积分学 122
4.1 定积分的概念与性质 122
4.1.1 两个引例 122
4.1.2 定积分的定义 124
4.1.3 定积分的基本性质 126
习题4.1 128
4.2 原函数与不定积分 129
4.2.1 原函数概念 129
4.2.2 不定积分的定义 130
4.2.3 基本积分表 131
4.2.4 积分的性质 132
习题4.2 133
4.3 微积分基本公式 134
4.3.1 微积分学基本定理 135
4.3.2 牛顿-莱布尼兹公式 137
习题4.3 138
4.4 换元积分法 139
4.4.1 不定积分的换元法 139
4.4.2 定积分的换元法 145
习题4.4 148
4.5 分部积分法 150
4.5.1 不定积分的分部积分法 150
4.5.2 定积分的分部积分法 153
习题4.5 154
4.6 基本积分表的使用 155
习题4.6 157
4.7 广义积分 157
4.7.1 无穷限的广义积分 157
4.7.2 无界函数的广义积分 159
4.7.3 两种广义积分的联系 161
习题4.7 161
4.8 定积分的应用 162
4.8.1 定积分在几何上的应用 162
4.8.2 定积分在物理上的应用 169
习题4.8 170
4.9 积分学的Matlab操作 172
4.9.1 不定积分的Matlab操作 172
4.9.2 定积分的Matlab操作 173
4.9.3 上机实验 174
[阅读材料]微积分的简史 174
本章小结 176
复习参考题 178
第5章 微分方程 180
5.1 微分方程的基本概念 180
5.1.1 实例 180
5.1.2 微分方程的基本概念 181
习题5.1 183
5.2 一阶微分方程 183
5.2.1 可分离变量的微分方程 183
5.2.2 一阶线性微分方程 184
习题5.2 188
5.3 二阶常系数线性微分方程 188
5.3.1 二阶常系数线性微分方程解的结构 188
5.3.2 二阶常系数线性齐次微分方程的解法 190
5.3.3 二阶常系数线性非齐次微分方程 192
习题5.3 195
5.4 微分方程应用举例 196
习题5.4 198
5.5 求解微分方程的Matlab操作 199
5.5.1 函数简介 199
5.5.2 上机实验 200
[阅读材料]马尔萨斯人口模型 200
本章小结 201
复习参考题 202
第6章 无穷级数 204
6.1 数项级数 204
6.1.1 无穷级数的基本概念 204
6.1.2 收敛级数的基本性质 206
习题6.1 207
6.2 正项级数 208
6.2.1 正项级数收敛的充要条件 208
6.2.2 正项级数比较判别法 209
6.2.3 正项级数的比值判别法 210
6.2.4 正项级数的根值判别法(柯西判别法) 212
习题6.2 212
6.3 交错级数 绝对收敛与相对收敛 213
6.3.1 交错级数 213
6.3.2 绝对收敛与条件收敛 214
习题6.3 215
6.4 幂级数 216
6.4.1 函数项级数的概念 216
6.4.2 幂级数的概念及其收敛性 216
6.4.3 幂级数的运算 219
习题6.4 221
6.5 函数展开成幂级数 222
6.5.1 泰勒级数 222
6.5.2 函数展开成幂级数 223
习题6.5 226
6.6 傅里叶级数 226
6.6.1 三角级数、三角函数系 226
6.6.2 三角函数系的性质 227
6.6.3 函数展开成傅里叶级数 228
6.6.4 正弦级数与余弦级数 232
习题6.6 234
6.7 级数的Matlab操作 234
6.7.1 幂级数求和的Matlab操作 234
6.7.2 Taylor级数的Matlab操作 236
6.7.3 傅里叶级数 237
6.7.4 上机实验 238
[阅读材料]傅里叶 239
本章小结 240
复习参考题 242
附录 244
附录A 常用数学公式 244
附录B 希腊字母表 246
附录C 几种常用的曲线 247
附录D 积分表 250
习题参考答案 258
参考文献 272
- 《钒产业技术及应用》高峰,彭清静,华骏主编 2019
- 《现代水泥技术发展与应用论文集》天津水泥工业设计研究院有限公司编 2019
- 《MBA大师.2020年MBAMPAMPAcc管理类联考专用辅导教材 数学考点精讲》(中国)董璞 2019
- 《英汉翻译理论的多维阐释及应用剖析》常瑞娟著 2019
- 《2013数学奥林匹克试题集锦 走向IMO》2013年IMO中国国家集训队教练组编 2013
- 《一个数学家的辩白》(英)哈代(G.H.Hardy)著;李文林,戴宗铎,高嵘译 2019
- 《数据库技术与应用 Access 2010 微课版 第2版》刘卫国主编 2020
- 《高等数学试题与详解》西安电子科技大学高等数学教学团队 2019
- 《区块链DAPP开发入门、代码实现、场景应用》李万胜著 2019
- 《虚拟流域环境理论技术研究与应用》冶运涛蒋云钟梁犁丽曹引等编著 2019
- 《大学计算机实验指导及习题解答》曹成志,宋长龙 2019
- 《大学生心理健康与人生发展》王琳责任编辑;(中国)肖宇 2019
- 《大学英语四级考试全真试题 标准模拟 四级》汪开虎主编 2012
- 《大学英语教学的跨文化交际视角研究与创新发展》许丽云,刘枫,尚利明著 2020
- 《复旦大学新闻学院教授学术丛书 新闻实务随想录》刘海贵 2019
- 《大学英语综合教程 1》王佃春,骆敏主编 2015
- 《大学物理简明教程 下 第2版》施卫主编 2020
- 《大学化学实验》李爱勤,侯学会主编 2016
- 《中国十大出版家》王震,贺越明著 1991
- 《近代民营出版机构的英语函授教育 以“商务、中华、开明”函授学校为个案 1915年-1946年版》丁伟 2017