当前位置:首页 > 数理化
数值最优化:英文本
数值最优化:英文本

数值最优化:英文本PDF电子书下载

数理化

  • 电子书积分:18 积分如何计算积分?
  • 作 者:JorgeNocedal,St
  • 出 版 社:科学出版计
  • 出版年份:2006
  • ISBN:7030166752
  • 页数:636 页
图书介绍:本书是国际知名专家写的很权威的优化方面的书,可作为研究生教材使用。
《数值最优化:英文本》目录
标签:最优化 数值

1 Introduction 1

Mathematical Formulation 2

Example:A Transportation Problem 4

Continuous versus Discrete Optimization 4

Constrained and Unconstrained Optimization 6

Global and Local Optimization 6

Stochastic and Deterministic Optimization 7

Optimization Algorithms 7

Convexity 8

Notes and References 9

2 Fundamentals of Unconstrained Optimization 10

2.1 What Is a Solution? 13

Recognizing a Local Minimum 15

Nonsmooth Problems 18

2.2 Overview of Algorithms 19

Two Strategies:Line Search and Trust Region 19

Search Directions for Line Search Methods 21

Models for Trust-Region Methods 26

Scaling 27

Rates of Convergence 28

R-Rates of Convergence 29

Notes and References 30

Exercises 30

3 Line Search Methods 34

3.1 Step Length 36

The Wolfe Conditions 37

The Goldstein Conditions 41

Sufficient Decrease and Backtracking 41

3.2 Convergence of Line Search Methods 43

3.3 Rate of Convergence 46

Convergence Rate of Steepest Descent 47

Quasi-Newton Methods 49

Newton’s Method 51

Coordinate Descent Methods 53

3.4 Step-Length Selection Algorithms 55

Interpolation 56

The Initial Step Length 58

A Line Search Algorithm for the Wolfe Conditions 58

Notes and References 61

Exercises 62

4 Trust-Region Methods 64

Outline of the Algorithm 67

4.1 The Cauchy Point and Related Algorithms 69

The Cauchy Point 69

Improving on the Cauchy Point 70

The Dogleg Method 71

Two-Dimensional Subspace Minimization 74

Steihaug’s Approach 75

4.2 Using Nearly Exact Solutions to the Subproblem 77

Characterizing Exact Solutions 77

Calculating Nearly Exact Solutions 78

The Hard Case 82

Proof of Theorem 4.3 84

4.3 Global Convergence 87

Reduction Obtained by the Cauchy Point 87

Convergence to Stationary Points 89

Convergence of Algorithms Based on Nearly Exact Solutions 93

4.4 Other Enhancements 94

Scaling 94

Non-Euclidean Trust Regions 96

Notes and References 97

Exercises 97

5 Conjugate Gradient Methods 100

5.1 The Linear Conjugate Gradient Method 102

Conjugate Direction Methods 102

Basic Properties of the Conjugate Gradient Method 107

A Practical Form of the Conjugate Gradient Method 111

Rate of Convergence 112

Preconditioning 118

Practical Preconditioners 119

5.2 Nonlinear Conjugate Gradient Methods 120

The Fletcher-Reeves Method 120

The Polak-Ribiere Method 121

Quadratic Termination and Restarts 122

Numerical Performance 124

Behavior of the Fletcher-Reeves Method 124

Global Convergence 127

Notes and References 131

Exercises 132

6 Practical Newton Methods 134

6.1 Inexact Newton Steps 136

6.2 Line Search Newton Methods 139

Line Search Newton-CG Method 139

Modified Newton’s Method 141

6.3 Hessian Modifications 142

Eigenvalue Modification 143

Adding a Multiple of the Identity 144

Modified Cholesky Factorization 145

Gershgorin Modification 150

Modified Symmetric Indefinite Factorization 151

6.4 Trust-Region Newton Methods 154

Newton-Dogleg and Subspace-Minimization Methods 154

Accurate Solution of the Trust-Region Problem 155

Trust-Region Newton-CG Method 156

Preconditioning the Newton-CG Method 157

Local Convergence of Trust-Region Newton Methods 159

Notes and References 162

Exercises 162

7 Calculating Derivatives 164

7.1 Finite-Difference Derivative Approximations 166

Approximating the Gradient 166

Approximating a Sparse Jacobian 169

Approximating the Hessian 173

Approximating a Sparse Hessian 174

7.2 Automatic Differentiation 176

An Example 177

The Forward Mode 178

The Reverse Mode 179

Vector Functions and Partial Separability 183

Calculating Jacobians of Vector Functions 184

Calculating Hessians:Forward Mode 185

Calculating Hessians:Reverse Mode 187

Current Limitations 188

Notes and References 189

Exercises 189

8 Quasi-Newton Methods 192

8.1 The BFGS Method 194

Properties of the BFGS Method 199

Implementation 200

8.2 The SR1 Method 202

Properties of SR1 Updating 205

8.3 The Broyden Class 207

Properties of the Broyden Class 209

8.4 Convergence Analysis 211

Global Convergence of the BFGS Method 211

Superlinear Convergence of BFGS 214

Convergence Analysis of the SR1 Method 218

Notes and References 219

Exercises 220

9 Large-Scale Quasi-Newton and Partially Separable Optimization 222

9.1 Limited-Memory BFGS 224

Relationship with Conjugate Gradient Methods 227

9.2 General Limited-Memory Updating 229

Compact Representation of BFGS Updating 230

SR1 Matrices 232

Unrolling the Update 232

9.3 Sparse Quasi-Newton Updates 233

9.4 Partially Separable Functions 235

A Simple Example 236

Internal Variables 237

9.5 Invariant Subspaces and Partial Separability 240

Sparsity vs.Partial Separability 242

Group Partial Separability 243

9.6 Algorithms for Partially Separable Functions 244

Exploiting Partial Separability in Newton’s Method 244

Quasi-Newton Methods for Partially Separable Functions 245

Notes and References 247

Exercises 248

10 Nonlinear Least-Squares Problems 250

10.1 Background 253

Modeling,Regression,Statistics 253

Linear Least-Squares Problems 256

10.2 Algorithms for Nonlinear Least-Squares Problems 259

The Gauss-Newton Method 259

The Levenberg-Marquardt Method 262

Implementation of the Levenberg-Marquardt Method 264

Large-Residual Problems 266

Large-Scale Problems 269

10.3 Orthogonal Distance Regression 271

Notes and References 273

Exercises 274

11 Nonlinear Equations 276

11.1 Local Algorithms 281

Newton’s Method for Nonlinear Equations 281

Inexact Newton Methods 284

Broyden’s Method 286

Tensor Methods 290

11.2 Practical Methods 292

Merit Functions 292

Line Search Methods 294

Trust-Region Methods 298

11.3 Continuation/Homotopy Methods 304

Motivation 304

Practical Continuation Methods 306

Notes and References 310

Exercises 311

12 Theory of Constrained Optimization 314

Local and Global Solutions 316

Smoothness 317

12.1 Examples 319

A Single Equality Constraint 319

A Single Inequality Constraint 321

Two Inequality Constraints 324

12.2 First-Order Optimality Conditions 327

Statement of First-Order Necessary Conditions 327

Sensitivity 330

12.3 Derivation of the First-Order Conditions 331

Feasible Sequences 332

Characterizing Limiting Directions:Constraint Qualifications 336

Introducing Lagrange Multipliers 339

Proof of Theorem 12.1 341

12.4 Second-Order Conditions 342

Second-Order Conditions and Projected Hessians 348

Convex Programs 350

12.5 Other Constraint Qualifications 351

12.6 A Geometric Viewpoint 354

Notes and References 357

Exercises 358

13 Linear Programming&The Simplex Method 362

Linear Programming 364

13.1 Optimality and Duality 366

Optimality Conditions 366

The Dual Problem 367

13.2 Geometry of the Feasible Set 370

Basic Feasible Points 370

Vertices of the Feasible Polytope 372

13.3 The Simplex Method 374

Outline of the Method 374

Finite Termination of the Simplex Method 377

A Single Step of the Method 378

13.4 Linear Algebra in the Simplex Method 379

13.5 Other (Important) Details 383

Pricing and Selection of the Entering Index 383

Starting the Simplex Method 386

Degenerate Steps and Cycling 389

13.6 Where Does the Simplex Method Fit? 391

Notes and References 392

Exercises 393

14 Linear Programming:Interior-Point Methods 394

14.1 Primal-Dual Methods 396

Outline 396

The Central Path 399

A Primal-Dual Framework 401

Path-Following Methods 402

14.2 A Practical Primal-Dual Algorithm 404

Solving the Linear Systems 408

14.3 Other Primal-Dual Algorithms and Extensions 409

Other Path-Following Methods 409

Potential-Reduction Methods 409

Extensions 410

14.4 Analysis of Algorithm 14.2 411

Notes and References 416

Exercises 417

15 Fundamentals of Algorithms for Nonlinear Constrained Optimization 420

Initial Study of a Problem 422

15.1 Categorizing Optimization Algorithms 423

15.2 Elimination of Variables 426

Simple Elimination for Linear Constraints 427

General Reduction Strategies for Linear Constraints 430

The Effect of Inequality Constraints 434

15.3 Measuring Progress:Merit Functions 434

Notes and References 437

Exercises 438

16 Quadratic Programming 440

An Example:Portfolio Optimization 442

16.1 Equality-Constrained Quadratic Programs 443

Properties of Equality-Constrained QPs 444

16.2 Solving the KKT System 447

Direct Solution of the KKT System 448

Range-Space Method 449

Null-Space Method 450

A Method Based on Conjugacy 452

16.3 Inequality-Constrained Problems 453

Optimality Conditions for Inequality-Constrained Problems 454

Degeneracy 455

16.4 Active-Set Methods for Convex QP 457

Specification of the Active-Set Method for Convex QP 461

An Example 463

Further Remarks on the Active-Set Method 465

Finite Termination of the Convex QP Algorithm 466

Updating Factorizations 467

16.5 Active-Set Methods for Indefinite QP 470

Illustration 472

Choice of Starting Point 474

Failure of the Active-Set Method 475

Detecting Indefiniteness Using the LBLT Factorization 475

16.6 The Gradient-Projection Method 476

Cauchy Point Computation 477

Subspace Minimization 480

16.7 Interior-Point Methods 481

Extensions and Comparison with Active-Set Methods 484

16.8 Duality 484

Notes and References 485

Exercises 486

17 Penalty,Barrier,and Augmented Lagrangian Methods 490

17.1 The Quadratic Penalty Method 492

Motivation 492

Algorithmic Framework 494

Convergence of the Quadratic Penalty Function 495

17.2 The Logarithmic Barrier Method 500

Properties of Logarithmic Barrier Functions 500

Algorithms Based on the Log-Barrier Function 505

Properties of the Log-Barrier Function and Framework 17.2 507

Handling Equality Constraints 509

Relationship to Primal-Dual Methods 510

17.3 Exact Penalty Functions 512

17.4 Augmented Lagrangian Method 513

Motivation and Algorithm Framework 513

Extension to Inequality Constraints 516

Properties of the Augmented Lagrangian 518

Practical Implementation 521

17.5 Sequential Linearly Constrained Methods 523

Notes and References 525

Exercises 526

18 Sequential Quadratic Programming 528

18.1 Local SQP Method 530

SQP Framework 531

Inequality Constraints 533

IQP vs.EQP 534

18.2 Preview of Practical SQP Methods 534

18.3 Step Computation 536

Equality Constraints 536

Inequality Constraints 538

18.4 The Hessian of the Quadratic Model 539

Full Quasi-Newton Approximations 540

Hessian of Augmented Lagrangian 541

Reduced-Hessian Approximations 542

18.5 Merit Functions and Descent 544

18.6 A Line Search SQP Method 547

18.7 Reduced-Hessian SQP Methods 548

Some Properties of Reduced-Hessian Methods 549

Update Criteria for Reduced-Hessian Updating 550

Changes of Bases 551

A Practical Reduced-Hessian Method 552

18.8 Trust-Region SQP Methods 553

Approach Ⅰ:Shifting the Constraints 555

Approach Ⅱ:Two Elliptical Constraints 556

Approach Ⅲ:Sl 1 QP (Sequential l 1 Quadratic Programming) 557

18.9 A Practical Trust-Region SQP Algorithm 560

18.10 Rate of Convergence 563

Convergence Rate of Reduced-Hessian Methods 565

18.11 The Maratos Effect 567

Second-Order Correction 570

Watchdog (Nonmonotone) Strategy 571

Notes and References 573

Exercises 574

A Background Material 576

A.1 Elements of Analysis,Geometry,Topology 577

Topology of the Euclidean Space Rn 577

Continuity and Limits 580

Derivatives 581

Directional Derivatives 583

Mean Value Theorem 584

Implicit Function Theorem 585

Geometry of Feasible Sets 586

Order Notation 591

Root-Finding for Scalar Equations 592

A.2 Elements of Linear Algebra 593

Vectors and Matrices 593

Norms 594

Subspaces 597

Eigenvalues,Eigenvectors,and the Singular-Value Decomposition 598

Determinant and Trace 599

Matrix Factorizations:Cholesky,LU,QR 600

Sherman-Morrison-Woodbury Formula 605

Interlacing Eigenvalue Theorem 605

Error Analysis and Floating-Point Arithmetic 606

Conditioning and Stability 608

References 611

Index 625

相关图书
作者其它书籍
返回顶部