当前位置:首页 > 哲学宗教
模糊逻辑及其代数分析
模糊逻辑及其代数分析

模糊逻辑及其代数分析PDF电子书下载

哲学宗教

  • 电子书积分:12 积分如何计算积分?
  • 作 者:张小红著
  • 出 版 社:北京:科学出版社
  • 出版年份:2008
  • ISBN:7030221451
  • 页数:333 页
图书介绍:本书论述了近年来模糊逻辑的形式化研究的系统成果,特别是国内外众多学者近3年的最新成果。内容包括三个部分:(1)基于T-模的可换模糊命题逻辑研究;(2)基于伪T-模的非可换模糊逻辑研究;(3)源于非经典逻辑的代数结构的研究。
《模糊逻辑及其代数分析》目录

第1章 引言与预备知识 1

1.1引言 1

1.1.1关于狭义模糊逻辑、广义模糊逻辑与多值逻辑 1

1.1.2关于Elkan的“西瓜问题” 2

1.1.3关于代数逻辑(algebraic logic) 3

1.1.4近年国内外模糊逻辑基础研究综述 3

1.2序与格 7

1.2.1偏序集 7

1.2.2保序映射、剩余映射与序同构 9

1.2.3格及其理想(滤子) 11

1.3布尔代数及其各种推广 14

1.3.1布尔代数、Ockham代数与De Morgan代数 14

1.3.2伪补与Heyting格(代数) 16

1.4序代数与泛代数基本知识 18

1.4.1序半群与格序半群 18

1.4.2泛代数入门 20

1.5经典命题逻辑的代数分析 23

1.5.1经典命题逻辑的语义理论 23

1.5.2经典命题逻辑的语构理论 25

习题1 28

第2章 t-模、伪t-模与剩余格 30

2.1 t-模 30

2.1.1 t-模的定义及其连续性 30

2.1.2 t-模的代数性质 35

2.1.3与t-模相伴的剩余蕴涵 38

2.2可换剩余格 41

2.2.1可换格序剩余幺半群 41

2.2.2可换剩余格及其滤子 43

2.2.3可换剩余格的素滤子与格素滤子 47

2.3伪t-模 50

2.3.1伪t-模的基本概念 51

2.3.2伪Rot-模 53

2.4剩余格 56

2.4.1格序剩余幺半群 56

2.4.2剩余格及其滤子 58

习题2 61

第3章 可换模糊逻辑系统BL与? 62

3.1基本模糊逻辑系统BL 62

3.1.1基本定义和结论 62

3.1.2 BL-代数及系统BL的完备性 65

3.2逻辑系统BL的各种扩张 66

3.2.1 Lukasiewicz逻辑系统 Luk及G?del逻辑系统G 66

3.2.2乘积逻辑系统П及严格基本逻辑系统SBL 69

3.3逻辑系统BL的标准完备性 72

3.3.1 BL-链的序数和 73

3.3.2饱和BL-链(saturated BL-chain) 75

3.3.3饱和不可约BL-链(saturated and irreducible BL-chain) 77

3.3.4部分嵌入与标准完备性 81

3.4模糊逻辑系统? 84

3.4.1 Ro-代数及其完备性 84

3.4.2形式演算系统?*的语义和语构理论 87

习题3 89

第4章 基于左连续t-模的模糊逻辑系统MTL与UL 90

4.1模糊逻辑系统MTL 90

4.1.1形式系统MTL与系统IMTL/WNM/NM 90

4.1.2 MTL-代数及系统MTL的完备性 93

4.2系统MTL的标准完备性 95

4.2.1全序MTL-代数的嵌入性质 95

4.2.2标准完备性及其他完备性 98

4.3系统MTL的扩张 99

4.3.1模糊逻辑系统NMG 99

4.3.2模糊逻辑系统IIMTL 101

4.4模糊逻辑系统UL*及其完备性 103

4.4.1系统UL*及其可靠性定理 104

4.4.2 UL-代数及其素滤子定理 110

4.4.3系统UL*的完备性 113

4.4.4 Schweizer-Sklar t-模及系统UL的若干注记 116

习题4 121

第5章 与模糊逻辑相关的Rough逻辑系统 122

5.1 Rough集理论基础 122

5.1.1 Pawlak粗糙集的基本概念 122

5.1.2知识库、知识约简与信息系统 124

5.1.3 Rough集与模糊集——粗糙模糊集与模糊粗糙集 127

5.2 Rough逻辑系统RSL 132

5.2.1 Rough集与正则双Stone代数 132

5.2.2 ND型Rough蕴涵及其性质 135

5.2.3 RSL-代数 138

5.2.4逻辑系统RSL及其完备性 143

5.3关于广义Rough集模型 149

5.3.1 Boole代数上的广义Rough集模型 149

5.3.2 Boole代数上广义Rough集模型中的蕴涵算子 155

5.3.3 De Morgan代数上的广义Rough集模型 164

习题5 167

第6章 基于伪t-模的非可换模糊逻辑系统 169

6.1非可换模糊逻辑系统PL 169

6.1.1伪MV-代数(psMV-代数) 169

6.1.2非可换Lukasiewicz逻辑PL 171

6.1.3 PL的完备性 173

6.2非可换模糊逻辑系统psBL/psBLr与psMTL/psMTLr 174

6.2.1 psBL-代数与psMT L-代数 174

6.2.2逻辑系统psBL/psBLr与psMTL/psMTLr 179

6.3基于伪Ro t-模的非可换模糊逻辑系统PL 182

6.3.1逻辑系统PL*及其等价形式 182

6.3.2可证等价关系及系统PL*的可靠性 189

6.3.3 PL*-代数的正规素滤子定理 194

6.3.4系统PL的完备性及PL*的意义 199

6.4非可换模糊逻辑系统PUL 201

6.4.1非可换模糊命题演算系统PUL 201

6.4.2可证等价关系及系统PUL*的可靠性 205

6.4.3 PUL-代数的正规素滤子定理及系统PUL*的完备性 211

习题6 216

第7章 BCK/BIK+逻辑及相关代数结构研究 217

7.1 BCK逻辑与BCK-代数 218

7.1.1 BCK/FBCK逻辑与可换模糊逻辑 218

7.1.2 BCK-代数的基本知识 220

7.1.3 BCK-代数的滤子理论 223

7.2 BIK+逻辑、模糊BIK+逻辑与BIK+(BCC)-代数 225

7.2.1 BIK+逻辑与BIK+(BCC)-数 225

7.2.2 FBIK+逻辑与非可换模糊逻辑 227

7.2.3 BZ/BCC(BIK+)-代数的滤子理论 234

7.3伪Hoop与伪BCK-代数(psBCK-代数) 238

7.3.1伪Hoop及其正规素滤子定理 239

7.3.2 psBCK-代数与非可换模糊逻辑代数 244

7.4 MTL-代数与psMTL-代数的若干研究 247

7.4.1关于MTL-代数的滤子 247

7.4.2 psMTL-代数的正规滤子与Boole滤子 259

7.4.3 psBL-代数的psMV-滤子与psG-滤子 265

7.5 BCC-代数的Boole滤子与强剩余BCC-代数的正规滤子 268

7.5.1 BCC-代数的Boole滤子 268

7.5.2剩余 BCC-代数 271

7.5.3强剩余BCC-代数及其强正规素滤子定理 274

7.6强De Morgan代数与DRo-代数 278

7.6.1正则剩余格与De Morgan代数的关系 278

7.6.2由强De Morgan代数导出的正则剩余格 281

7.6.3 DRo-代数与Ro-代数的关系 285

7.7蕴涵格及其滤子理论 289

7.7.1蕴涵格及其性质 290

7.7.2蕴涵格的MP*-滤子及其同余关系 292

7.7.3蕴涵格的素MP*-滤子定理 295

7.8量子效应代数与模糊逻辑代数系统 300

7.8.1伪弱效应代数 301

7.8.2对偶伪BL-代数 303

7.8.3伪BL-代数与伪弱MV-效应代数 306

7.8.4伪MV-代数与伪MV-效应代数 312

习题7 315

参考文献 317

返回顶部