当前位置:首页 > 数理化
复分析
复分析

复分析PDF电子书下载

数理化

  • 电子书积分:15 积分如何计算积分?
  • 作 者:(美)加默兰著
  • 出 版 社:世界图书出版公司北京公司
  • 出版年份:2008
  • ISBN:7506292297
  • 页数:478 页
图书介绍:Gamelin的这本《复分析》教程,虽然属于Springer UTM系列,它比GTM系列教材贴近我国学生的实际情况。第一部分、复平面和基本函数;解析函数;线性积分和调和函数;复积分和解析性;幂级数;Laurent级数和孤立奇异点;留数计算;第二部分、对数积分;Schwarz引理和双曲积分;调和函数与反射原理;保形映射;第三部分、亚纯函数的紧族;逼近定理;特殊函数。
《复分析》目录
标签:复分析

FIRST PART 1

Chapter Ⅰ The Complex Plane and Elementary Functions 1

1. Complex Numbers 1

2. Polar Representation 5

3. Stereographic Projection 11

4. The Square and Square Root Functions 15

5. The Exponential Function 19

6. The Logarithm Function 21

7. Power Functions and Phase Factors 24

8. Trigonometric and Hyperbolic Functions 29

Chapter Ⅱ Analytic Functions 33

1. Review of Basic Analysis 33

2. Analytic Functions 42

3. The Cauchy-Riemann Equations 46

4. Inverse Mappings and the Jacobian 51

5. Harmonic Functions 54

6. Conformal Mappings 58

7. Fractional Linear Transformations 63

Chapter Ⅲ Line Integrals and Harmonic Functions 70

1. Line Integrals and Green's Theorem 70

2. Independence of Path 76

3. Harmonic Conjugates 83

4. The Mean Value Property 85

5. The Maximum Principle 87

6. Applications to Fluid Dynamics 90

7. Other Applications to Physics 97

Chapter Ⅳ Complex Integration and Analyticity 102

1. Complex Line Integrals 102

2. Fundamental Theorem of Calculus for Analytic Functions 107

3. Cauchy's Theorem 110

4. The Cauchy Integral Formula 113

5. Liouville's Theorem 117

6. Morera's Theorem 119

7. Goursat's Theorem 123

8. Complex Notation and Pompeiu's Formula 124

Chapter Ⅴ Power Series 130

1. Infinite Series 130

2. Sequences and Series of Functions 133

3. Power Series 138

4. Power Series Expansion of an Analytic Function 144

5. Power Series Expansion at Infinity 149

6. Manipulation of Power Series 151

7. The Zeros of an Analytic Function 154

8. Analytic Continuation 158

Chapter Ⅵ Laurent Series and Isolated Singularities 165

1. The Laurent Decomposition 165

2. Isolated Singularities of an Analytic Function 171

3. Isolated Singularity at Infinity 178

4. Partial Fractions Decomposition 179

5. Periodic Functions 182

6. Fourier Series 186

Chapter Ⅶ The Residue Calculus 195

1. The Residue Theorem 195

2. Integrals Featuring Rational Functions 199

3. Integrals of Trigonometric Functions 203

4. Integrands with Branch Points 206

5. Fractional Residues 209

6. Principal Values 212

7. Jordan's Lemma 216

8. Exterior Domains 219

SECOND PART 224

Chapter Ⅷ The Logarithmic Integral 224

1. The Argument Principle 224

2. Rouche's Theorem 229

3. Hurwitz's Theorem 231

4. Open Mapping and Inverse Function Theorems 232

5. Critical Points 236

6. Winding Numbers 242

7. The Jump Theorem for Cauchy Integrals 246

8. Simply Connected Domains 252

Chapter Ⅸ The Schwarz Lemma and Hyperbolic Geometry 260

1. The Schwarz Lemma 260

2. Conformal Self-Maps of the Unit Disk 263

3. Hyperbolic Geometry 266

Chapter Ⅹ Harmonic Functions and the Reflection Principle 274

1. The Poisson Integral Formula 274

2. Characterization of Harmonic Functions 280

3. The Schwarz Reflection Principle 282

Chapter Ⅺ Conformal Mapping 289

1. Mappings to the Unit Disk and Upper Half-Plane 289

2. The Riemann Mapping Theorem 294

3. The Schwarz-Christoffel Formula 296

4. Return to Fluid Dynamics 304

5. Compactness of Families of Functions 306

6. Proof of the Riemann Mapping Theorem 311

THIRD PART 315

Chapter Ⅻ Compact Families of Meromorphic Functions 315

1. Marty's Theorem 315

2. Theorems of Montel and Picard 320

3. Julia Sets 324

4. Connectedness of Julia Sets 333

5. The Mandelbrot Set 338

Chapter ⅩⅢ Approximation Theorems 342

1. Runge's Theorem 342

2. The Mittag-Leffler Theorem 348

3. Infinite Products 352

4. The Weierstrass Product Theorem 358

Chapter ⅩⅣ Some Special Functions 361

1. The Gamma Function 361

2. Laplace Transforms 365

3. The Zeta Function 370

4. Dirichlet Series 376

5. The Prime Number Theorem 382

Chapter ⅩⅤ The Dirichlet Problem 390

1. Green's Formulae 390

2. Subharmonic Functions 394

3. Compactness of Families of Harmonic Functions 398

4. The Perron Method 402

5. The Riemann Mapping Theorem Revisited 406

6. Green's Function for Domains with Analytic Boundary 407

7. Green's Function for General Domains 413

Chapter ⅩⅥ Riemann Surfaces 418

1. Abstract Riemann Surfaces 418

2. Harmonic Functions on a Riemann Surface 426

3. Green's Function of a Surface 429

4. Symmetry of Green's Function 434

5. Bipolar Green's Function 436

6. The Uniformization Theorem 438

7. Covering Surfaces 441

Hints and Solutions for Selected Exercises 447

References 469

List of Symbols 471

Index 473

返回顶部