当前位置:首页 > 数理化
高等应用数学  上  第2版
高等应用数学  上  第2版

高等应用数学 上 第2版PDF电子书下载

数理化

  • 电子书积分:11 积分如何计算积分?
  • 作 者:上海高校《高等应用数学》编写组
  • 出 版 社:上海:立信会计出版社
  • 出版年份:2007
  • ISBN:9787542914859
  • 页数:269 页
图书介绍:本书编写着眼于经济类高职、高专“财会数会”课程教学,内容包括:函数、比率和比例、平均数、直线、利息与年金、极限、导数、微分等。
《高等应用数学 上 第2版》目录

第一章 函数、极限与连续 1

第一节 函数 1

一、函数的概念 1

二、函数的几何特性 5

习题1-1 7

第二节 初等函数 8

一、基本初等函数 8

二、复合函数 12

三、初等函数 14

习题1-2 14

第三节 极限的概念 15

一、数列的极限 15

二、函数的极限 17

习题1-3 23

第四节 无穷小与无穷大 24

一、无穷小与无穷大 24

二、无穷小的性质 26

三、无穷小的阶 27

习题1-4 28

第五节 极限的运算法则 29

一、极限的四则运算法则 29

二、未定式的极限 32

习题1-5 34

第六节 两个重要极限 35

一、极限存在准则 35

二、?sinx/x=1 36

三、?(1+1/x)x=e 38

习题1-6 41

第七节 函数的连续性 42

一、函数连续的概念 42

二、函数的间断点 45

三、连续函数的运算法则 46

四、闭区间上连续函数的性质 47

习题1-7 49

复习题一 50

第二章 导数与微分 53

第一节 导数的概念 53

一、导数的概念 53

二、导数的几何意义 58

三、可导与连续的关系 59

习题2-1 61

第二节 函数和、差、积、商的求导法则 62

习题2-2 65

第三节 复合函数的求导法则 66

习题2-3 70

第四节 隐函数的求导法则 70

一、隐函数的求导法则 70

二、对数求导法 72

习题2-4 74

第五节 高阶导数 74

习题2-5 76

第六节 函数的微分 76

一、微分的概念 76

二、可微与可导的关系 77

三、微分的运算法则 79

习题2-6 81

第七节 边际分析与弹性分析 82

一、常用的经济函数 82

二、边际分析 85

三、弹性分析 87

习题2-7 91

复习题二 92

第三章 导数的应用 95

第一节 函数的单调性及其判别法 95

一、拉格朗日定理 95

二、函数单调性的判别法 97

习题3-1 99

第二节 函数的极值及其求法 100

一、函数极值的概念与极值存在的必要条件 100

二、极值存在的充分条件 102

习题3-2 105

第三节 函数的最大值、最小值及其应用 106

一、闭区间上连续函数的最大值、最小值的求法 106

二、求实际问题的最大值或最小值举例 106

三、极值在经济中的应用 107

习题3-3 110

第四节 曲线的凹凸及函数图形的描绘 111

一、曲线的凹凸与拐点 111

二、渐近线 114

三、函数图形的描绘 115

习题3-4 118

第五节 罗必塔法则 119

一、0/0型未定式 119

二、∞/∞型未定式 120

三、其他未定式 122

习题3-5 124

复习题三 125

第四章 不定积分 128

第一节 不定积分的概念与性质 128

一、原函数及不定积分的概念 128

二、不定积分的性质 131

三、基本积分公式 133

习题4-1 136

第二节 换元积分法 137

一、第一类换元积分法 137

二、第二类换元积分法 143

习题4-2 145

第三节 分部积分法 147

习题4-3 150

复习题四 151

第五章 定积分 154

第一节 定积分的概念 154

一、引例 154

二、定积分的定义 156

习题5-1 158

第二节 微积分基本公式和定积分的性质 158

一、积分上限的函数及其导数 158

二、微积分基本公式 159

三、定积分的性质 160

习题5-2 162

第三节 定积分的计算方法 163

一、定积分的换元积分法 163

二、定积分的分部积分法 167

习题5-3 169

第四节 定积分的应用 170

一、平面图形的面积 171

二、定积分在经济上的应用 173

习题5-4 175

第五节 无穷区间上的反常积分 176

习题5 5 178

复习题五 179

第六章 一阶微分方程 182

第一节 微分方程的概念与一阶微分方程 182

一、微分方程的概念 182

二、一阶微分方程 183

习题6-1 188

第二节 微分方程应用举例 190

习题6-2 192

复习题六 193

第七章 多元函数微积分 195

第一节 空间直角坐标系及曲面 195

一、空间直角坐标系 195

二、空间曲面 197

习题7-1 198

第二节 多元函数的基本概念 199

一、多元函数的概念 199

二、二元函数的极限与连续 201

习题7-2 203

第三节 偏导数与全微分 203

一、偏导数的概念 203

二、二阶偏导数 205

三、全微分 207

习题7-3 208

第四节 复合函数与隐函数的求导法则 209

一、二元复合函数的求导法则 209

二、隐函数的求导法则 211

习题7-4 213

第五节 二元函数的极值 214

习题7-5 217

第六节 二重积分 218

一、二重积分的概念 218

二、二重积分的性质 220

三、二重积分的计算 220

习题7-6 228

复习题七 229

附录一 习题答案 232

附录二 数学公式 267

相关图书
作者其它书籍
返回顶部