当前位置:首页 > 数理化
微分方程与边界值问题  英文版
微分方程与边界值问题  英文版

微分方程与边界值问题 英文版PDF电子书下载

数理化

  • 电子书积分:18 积分如何计算积分?
  • 作 者:(美)兹尔(Zill,D.G.) (美)库伦(Cullen,M.R.)著
  • 出 版 社:北京:机械工业出版社
  • 出版年份:2003
  • ISBN:7111123182
  • 页数:631 页
图书介绍:本书是理工类本科生、研究生微分方程教材。
上一篇:数理逻辑漫谈下一篇:数学分析
《微分方程与边界值问题 英文版》目录

1 INTRODUCTION TO DIFFERENTIAL EQUATIONS 1

1.1 Definitions and Terminology 2

1.2 Initial-Value Problems 15

1.3 Differential Equations as Mathematical Models 22

Chapter 1 in Review 37

2 FIRST-ORDER DIFFERENTIAL EQUATIONS 39

2.1 Solution Curves Without the Solution 40

2.2 Separable Variables 51

2.3 Linear Equations 60

2.4 Exact Equations 72

2.5 Solutions by Substitutions 80

2.6 A Numerical Solution 86

Chapter 2 in Review 92

3 MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS 95

3.1 Linear Equations 96

3.2 Nonlinear Equations 109

3.3 Systems of Linear and Nonlinear Differential Equations 121

Chapter 3 in Review 130

Project Module: Harvesting of Renewable Natural Resources, by Gilbert N. Lewis 133

4 HIGHER-ORDER DIFFERENTIAL EQUATIONS 138

4.1 Preliminary Theory: Linear Equations 139

4.1.1 Initial-Value and Boundary-Value Problems 139

4.1.2 Homogeneous Equations 142

4.1.3 Nonhomogeneous Equations 148

4.2 Reduction of Order 154

4.3 Homogeneous Linear Equations with Constant Coefficients 158

4.4 Undetermined Coefficients—Superposition Approach 167

4.5 Undetermined Coefficients—Annihilator Approach 178

4.6 Variation of Parameters 188

4.7 Cauchy-Euler Equation 193

4.8 Solving Systems of Linear Equations by Elimination 201

4.9 Nonlinear Equations 207

Chapter 4 in Review 212

5 MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS 215

5.1 Linear Equations: Initial-Value Problems 216

5.1.1 Spring/Mass Systems: Free Undamped Motion 216

5.1.2 Spring/Mass Systems: Free Damped Motion 220

5.1.3 Spring/Mass Systems: Driven Motion 224

5.1.4 Series Circuit Analogue 227

5.2 Linear Equations: Boundary-Value Problems 237

5.3 Nonlinear Equations 247

Chapter 5 in Review 259

Project Module: The Collapse of the Tacoma Narrows Suspension Bridge, by Gilbert N. Lewis 263

6 SERIES SOLUTIONS Of LINEAR EQUATIONS 267

6.1 Solutions About Ordinary Points 268

6.1.1 Review of Power Series 268

6.1.2 Power Series Solutions 271

6.2 Solutions About Singular Points 280

6.3 Two Special Equations 292

Chapter 6 in Review 304

7 THE LAPLACE TRANSFORM 306

7.1 Definition of the Laplace Transform 307

7.2 Inverse Transform and Transforms of Derivatives 314

7.3 Translation Theorems 324

7.3.1 Translation on the s-Axis 324

7.3.2 Translation on the t-Axis 328

7.4 Additional Operational Properties 338

7.5 Dirac Delta Function 351

7.6 Systems of Linear Equations 354

Chapter 7 in Review 361

8 SYSTEMS OF LINEAR FIRST-ORDER DIFFERENTIAL EQUATIONS 364

8.1 Preliminary Theory 365

8.2 Homogeneous Linear Systems with Constant Coefficients 375

8.2.1 Distinct Real Eigenvalues 376

8.2.2 Repeated Eigenvalues 380

8.2.3 Complex Eigenvalues 384

8.3 Variation of Parameters 393

8.4 Matrix Exponential 399

Chapter 8 in Review 404

Project Module: Earthquake Shaking of Multistory Buildings, by Gilbert N. Lewis 406

9 NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS 410

9.1 Euler Methods and Error Analysis 411

9.2 Runge-Kutta Methods 417

9.3 Multistep Methods 424

9.4 Higher-Order Equations and Systems 427

9.5 Second-Order Boundary-Value Problems 433

Chapter 9 in Review 438

10 PLANE AUTONOMOUS SYSTEMS AND STABILITY 439

10.1 Autonomous Systems, Critical Points, and Periodic Solutions 440

10.2 Stability of Linear Systems 448

10.3 Linearization and Local Stability 458

10.4 Modeling Using Autonomous Systems 470

Chapter 10 in Review 480

11 ORTHOGONAL FUNCTIONS AND FOURIER SERIES 483

11.1 Orthogonal Functions 484

11.2 Fourier Series 489

11.3 Fourier Cosine and Sine Series 495

11.4 Sturm-Liouville Problem 504

11.5 Bessel and Legendre Series 511

11.5.1 Fourier-Bessel Series 512

11.5.2 Fourier-Legendre Series 515

Chapter 11 in Review 519

12 PARTIAL DIFFERENTIAL EQUATIONS AND BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES 521

12.1 Separable Partial Differential Equations 522

12.2 Classical Equations and Boundary-Value Problems 527

12.3 Heat Equation 533

12.4 Wave Equation 536

12.5 Laplace s Equation 542

12.6 Nonhomogeneous Equations and Boundary Conditions 547

12.7 Orthogonal Series Expansions 551

12.8 Boundary-Value Problems Involving Fourier Series in Two Variables 555

Chapter 12 in Review 559

13 BOUNDARY-VALUE PROBLEMS IN OTHER COORDINATE SYSTEMS 561

13.1 Problems Involving Laplace s Equation in Polar Coordinates 562

13.2 Problems in Polar and Cylindrical Coordinates: Bessel Functions 567

13.3 Problems in Spherical Coordinates: Legendre Polynomials 575

Chapter 13 in Review 578

14 INTEGRAL TRANSFORM METHOD 581

14.1 Error Function 582

14.2 Applications of the Laplace Transform 584

14.3 Fourier Integral 595

14.4 Fourier Transforms 601

Chapter 14 in Review 607

15 NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS 610

15.1 Elliptic Equations 611

15.2 Parabolic Equations 617

15.3 Hyperbolic Equations 625

Chapter 15 in Review 630

相关图书
作者其它书籍
返回顶部