当前位置:首页 > 数理化
矩阵结合方案  英文版
矩阵结合方案  英文版

矩阵结合方案 英文版PDF电子书下载

数理化

  • 电子书积分:10 积分如何计算积分?
  • 作 者:王仰贤等著
  • 出 版 社:北京:外文出版社
  • 出版年份:2010
  • ISBN:9787030266163
  • 页数:235 页
图书介绍:本书论述有限域上各类典型矩阵在群作用下构作的结合方案,其内容主要包括有限域上的长方矩阵、交错矩阵、Hermite矩阵、对称矩阵和二次型构作的结合方案,导出各类结合方案的一般参数计算公式,讨论这些结合方案的本原性、对偶性、P多项式等基本性质以及自同构群。特别论述了特征数为2时二次型结合方案的特征值及其聚合方案的对偶方案。
上一篇:理论力学下一篇:D膜 英文版
《矩阵结合方案 英文版》目录

Chapter 1 Basic Theory of Association Schemes 1

1.1 Definition of Association Scheme 1

1.2 Examples 4

1.3 The Eigenvalues of Association Schemes 7

1.4 The Krein Parameters 12

1.5 S-Rings and Duality 16

1.6 Primitivity and Imprimitivity 20

1.7 Subschemes and Quotient Schemes 25

1.8 The Polynomial Property 29

1.9 The Automorphisms 34

Chapter 2 Association Schemes of Rectangular Matrices 36

2.1 Definition and Primitivity 36

2.2 The Polynomial Property of Association Schemes of Rectangular Matrices 39

2.3 Recurrence Formulas for Intersection Numbers 42

2.4 The Duality of Association Schemes of Rectangular Matrices 48

2.5 The Automorphisms of Mat(m×n,q) 50

Chapter 3 Association Schemes of Alternate Matrices 52

3.1 Primitivity and P-polynomial Property 52

3.2 The Parameters of Γ(1) 54

3.3 Recurrences for Intersection Numbers 58

3.4 Recurrences for Intersection Numbers:Continued 62

3.5 The Self-duality of Alt(n,q) 66

3.6 The Automorphisms of Alt(n,q) 67

Chapter 4 Association Schemes of Hermitian Matrices 69

4.1 Primitivity and P-polynomial Property 69

4.2 The Parameters of Graph Г(1) 71

4.3 Recurrences for Intersection Numbers 74

4.4 Recurrences for Intersection Numbers:Continued 77

4.5 The Self-duality of Her(n,q2) 80

4.6 The Automorphisms of Her(n,q2) 81

Chapter 5 Association Schemes of Symmetric Matrices in Odd Characteristic 82

5.1 The Normal Forms of Symmetric Matrices 82

5.2 The Association Schemes of Symmetric Matrices and Their Primitivity 83

5.3 Sym(n,q)for Small n 87

5.4 A Few Enumeration Formulas from Orthogonal Geometry 92

5.5 Calculation of Intersection Numbers 96

5.6 Calculation of Intersection Numbers:Continued 101

5.7 The Association Scheme Quad(n,q) 109

5.8 The Self-duality of Sym(n,q) 121

5.9 The Automorphisms of Sym(n,q) 122

Chapter 6 Association Schemes of Symmetric Matrices in Even Characteristic 128

6.1 The Normal Forms of Symmetric Matrices 128

6.2 The Imprimitivity of Sym(n,q) 129

6.3 The Association Scheme Sym(2,q) 130

6.4 Some Results of Pseudo-symplectic Geometry 135

6.5 Calculation of Intersection Numbers 138

6.6 Calculation of Intersection Numbers:Continued 145

6.7 A Fusion Scheme of Sym(n,q) 150

6.8 The Automorphisms of Sym(n,q) 154

Chapter 7 Association Schemes of Quadratic Forms in Even Characteristic 156

7.1 The Normal Forms of Quadratic Forms 156

7.2 Qua(2,q)and Qua(3,q) 160

7.3 Some Enumeration Formulas from Orthogonal Geometry 166

7.4 Calculation of Intersection Numbers 172

7.5 The Duality of Association Schemes of Quadratic Forms 186

7.6 The Imprimitivity of Association Schemes of Quadratic Forms 190

7.7 Two Fusion Schemes of Qua(n,q) 192

7.8 The Automorphisms of Association Schemes of Quadratic Forms 199

Chapter 8 The Eigenvalues of Association Schemes of Quadratic Forms 207

8.1 The Eigenvalues of Association Scheme Qua(2,q) 207

8.2 Some Lemmas on Additive Characters 209

8.3 The 1-extensions and f(n)r 211

8.4 Values of f(n)r on the Union Classes C(n)2i 215

8.5 The 2-extensions and f(n)2k 218

8.6 Values of f(n)2k on Classes C(n)2i and C(n)2i ∪C(n)2i-1 227

8.7 Dual Schemes of Two Fusion Schemes of Qua(n,q) 229

8.8 Eigenvalues of Small Association Schemes of Quadratic Forms 230

References 233

Index 235

返回顶部