分析 2PDF电子书下载
- 电子书积分:14 积分如何计算积分?
- 作 者:(法)RogerGodement著
- 出 版 社:北京:高等教育出版社
- 出版年份:2009
- ISBN:9787040279542
- 页数:444 页
Ⅴ-Differential and Integral Calculus 1
1.The Riemann Integral 1
1-Upper and lower integrals of a bounded function 1
2-Elementary properties of integrals 5
3-Riemann sums.The integral notation 14
4-Uniform limits of integrable functions 16
5-Application to Fourier series and to power series 21
2.Integrability Conditions 26
6-The Borel-Lebesgue Theorem 26
7-Integrability of regulated or continuous functions 29
8-Uniform continuity and its consequences 31
9-Differentiation and integration under the ∫ sign 36
10-Semicontinuous functions 41
11-Integration of semicontinuous functions 48
3.The"Fundamental Theorem"(FT) 52
12-The fundamental theorem of the differential and integral calculus 52
13-Extension of the fundamental theorem to regulated func-tions 59
14-Convex functions;H?lder and Minkowski inequalities 65
4.Integration by parts 74
15-Integration by parts 74
16-The square wave Fourier series 77
17-Wallis'formula 80
5.Taylor's Formula 82
18-Taylor's Formula 82
6.The change of variable formula 91
19-Change of variable in an integral 91
20-Integration of rational fractions 95
7.Generalised Riemann integrals 102
21-Convergent integrals:examples and definitions 102
22-Absolutely convergent integrals 104
23-Passage to the limit under the ∫ sign 109
24-Series and integrals 115
25-Differentiation under the ∫ sign 118
26-Integration under the ∫ sign 124
8.Approximation Theorems 129
27-How to make C∞ a function which is not 129
28-Approximation by polynomials 135
29-Functions having given derivatives at a point 138
9.Radon measures in R or C 141
30-Radon measures on a compact set 141
31-Measures on a locally compact set 150
32-The Stieltjes construction 157
33-Application to double integrals 164
10.Schwartz distributions 168
34-Definition and examples 168
35-Derivatives of a distribution 173
Appendix to Chapter Ⅴ-Introduction to the Lebesgue Theory 179
Ⅵ-Asymptotic Analysis 195
1.Truncated expansions 195
1-Comparison relations 195
2-Rules of calculation 197
3-Truncated expansions 198
4-Truncated expansion of a quotient 200
5-Gauss'convergence criterion 202
6-The hypergeometric series 204
7-Asymptotic study of the equation xex=t 206
8-Asymptotics of the roots of sin x log x=1 208
9-Kepler's equation 210
10-Asymptotics of the Bessel functions 213
2.Summation formulae 224
11-Cavalieri and the sums 1k+2k+...+nk 224
12-Jakob Bernoulli 226
13-The power series for cot z 231
14-Euler and the power series for arctanx 234
15-Euler,Maclaurin and their summation formula 238
16-The Euler-Maclaurin formula with remainder 239
17-Calculating an integral by the trapezoidal rule 241
18-The sum 1+1/2+...+1/n,the infinite product for the Γ function,and Stirling's formula 242
19-Analytic continuation of the zeta function 247
Ⅶ-Harmonic Analysis and Holomorphic Functions 251
1-Cauchy's integral formula for a circle 251
1.Analysis on the unit circle 255
2-Functions and measures on the unit circle 255
3-Fourier coefficients 261
4-Convolution product on T 266
5-Dirac sequences in T 270
2.Elementary theorems on Fourier series 274
6-Absolutely convergent Fourier series 274
7-Hilbertian calculations 275
8-The Parseval-Bessel equality 277
9-Fourier series of difierentiable functions 283
10-Distributions on T 287
3.Dirichlet's method 295
11-Dirichlet's theorem 295
12-Fejér's theorem 301
13-Uniformly convergent Fourier series 303
4.Analytic and holomorphic functions 307
14-Analyticity of the holomorphic functions 308
15-The maximum principle 310
16-Functions analytic in an annulus.Singular points.Mero-morphic functions 313
17-Periodic holomorphic functions 319
18-The theorems of Liouville and of d'Alembert-Gauss 320
19-Limits of holomorphic functions 330
20-Infinite products of holomorphic functions 332
5.Harmonic functions and Fourier series 340
21-Analytic functions defined by a Cauchy integral 340
22-Poisson's function 342
23-Applications to Fourier series 344
24-Harmonic functions 347
25-Limits of harmonic functions 351
26-The Dirichlet problem for a disc 354
6.From Fourier series to integrals 357
27-The Poisson summation formula 357
28-Jacobi's theta function 361
29-Fundamental formulae for the Fourier transform 365
30-Extensions of the inversion formula 369
31-The Fourier transform and differentiation 374
32-Tempered distributions 378
Postface.Science,technology,arms 387
Index 436
Table of Contents of Volume Ⅰ 441
- 《水面舰艇编队作战运筹分析》谭安胜著 2009
- 《分析化学》陈怀侠主编 2019
- 《影响葡萄和葡萄酒中酚类特征的因素分析》朱磊 2019
- 《仪器分析技术 第2版》曹国庆 2018
- 《全国普通高等中医药院校药学类专业十三五规划教材 第二轮规划教材 分析化学实验 第2版》池玉梅 2018
- 《Power BI数据清洗与可视化交互式分析》陈剑 2020
- 《行测资料分析》李永新主编 2019
- 《药物分析》贡济宇主编 2017
- 《土壤环境监测前沿分析测试方法研究》中国环境监测总站编著 2018
- 《药物分析》童珊珊,余江南 2019
- 《中风偏瘫 脑萎缩 痴呆 最新治疗原则与方法》孙作东著 2004
- 《水面舰艇编队作战运筹分析》谭安胜著 2009
- 《王蒙文集 新版 35 评点《红楼梦》 上》王蒙著 2020
- 《TED说话的力量 世界优秀演讲者的口才秘诀》(坦桑)阿卡什·P.卡里亚著 2019
- 《燕堂夜话》蒋忠和著 2019
- 《经久》静水边著 2019
- 《魔法销售台词》(美)埃尔默·惠勒著 2019
- 《微表情密码》(波)卡西亚·韦佐夫斯基,(波)帕特里克·韦佐夫斯基著 2019
- 《看书琐记与作文秘诀》鲁迅著 2019
- 《酒国》莫言著 2019
- 《全国高等中医药行业“十三五”创新教材 中医药学概论》翟华强 2019
- 《培智学校义务教育实验教科书教师教学用书 生活适应 二年级 上》人民教育出版社,课程教材研究所,特殊教育课程教材研究中心编著 2019
- 《指向核心素养 北京十一学校名师教学设计 英语 七年级 上 配人教版》周志英总主编 2019
- 《习近平总书记教育重要论述讲义》本书编写组 2020
- 《办好人民满意的教育 全国教育满意度调查报告》(中国)中国教育科学研究院 2019
- 《高等数学试题与详解》西安电子科技大学高等数学教学团队 2019
- 《北京生态环境保护》《北京环境保护丛书》编委会编著 2018
- 《教育学考研应试宝典》徐影主编 2019
- 《语文教育教学实践探索》陈德收 2018
- 《家庭音乐素养教育》刘畅 2018