当前位置:首页 > 数理化
湍流  英文版
湍流  英文版

湍流 英文版PDF电子书下载

数理化

  • 电子书积分:21 积分如何计算积分?
  • 作 者:(美)波普著
  • 出 版 社:北京/西安:世界图书出版公司
  • 出版年份:2010
  • ISBN:9787510005732
  • 页数:771 页
图书介绍:本书是一部研究湍流的教程。
《湍流 英文版》目录

PART ONE:FUNDAMENTALS 1

1 Introduction 3

1.1 The nature of turbulent flows 3

1.2 The study of turbulent flows 7

2 The equations of fluid motion 10

2.1 Continuum fluid properties 10

2.2 Eulerian and Lagrangian fields 12

2.3 The continuity equation 14

2.4 The momentum equation 16

2.5 The role of pressure 18

2.6 Conserved passive scalars 21

2.7 The vorticity equation 22

2.8 Rates of strain and rotation 23

2.9 Transformation properties 24

3 The statistical description of turbulent flows 34

3.1 The random nature of turbulence 34

3.2 Characterization of random variables 37

3.3 Examples of probability distributions 43

3.4 Joint random variables 54

3.5 Normal and joint-normal distributions 61

3.6 Random processes 65

3.7 Random fields 74

3.8 Probability and averaging 79

4 Mean-flow equations 83

4.1 Reynolds equations 83

4.2 Reynolds stresses 86

4.3 The mean scalar equation 91

4.4 Gradient-diffusion and turbulent-viscosity hypotheses 92

5 Free shear flows 96

5.1 The round jet:experimental observations 96

5.1.1 A description of the flow 96

5.1.2 The mean velocity field 97

5.1.3 Reynolds stresses 105

5.2 The round jet:mean momentum 111

5.2.1 Boundary-layer equations 111

5.2.2 Flow rates of mass,momentum,and energy 115

5.2.3 Self-similarity 116

5.2.4 Uniform turbulent viscosity 118

5.3 The round jet:kinetic energy 122

5.4 Other self-similar flows 134

5.4.1 The plane jet 134

5.4.2 The plane mixing layer 139

5.4.3 The plane wake 147

5.4.4 The axisymmetric wake 151

5.4.5 Homogeneous shear flow 154

5.4.6 Grid turbulence 158

5.5 Further observations 161

5.5.1 A conserved scalar 161

5.5.2 Intermittency 167

5.5.3 PDFs and higher moments 173

5.5.4 Large-scale turbulent motion 178

6 The scales of turbulent motion 182

6.1 The energy cascade and Kolmogorov hypotheses 182

6.1.1 The energy cascade 183

6.1.2 The Kolmogorov hypotheses 184

6.1.3 The energy spectrum 188

6.1.4 Restatement of the Kolmogorov hypotheses 189

6.2 Structure functions 191

6.3 Two-point correlation 195

6.4 Fourier modes 207

6.4.1 Fourier-series representation 207

6.4.2 The evolution of Fourier modes 211

6.4.3 The kinetic energy of Fourier modes 215

6.5 Velocity spectra 219

6.5.1 Definitions and properties 220

6.5.2 Kolmogorov spectra 229

6.5.3 A model spectrum 232

6.5.4 Dissipation spectra 234

6.5.5 The inertial subrange 238

6.5.6 The energy-containing range 240

6.5.7 Effects of the Reynolds number 242

6.5.8 The shear-stress spectrum 246

6.6 The spectral view of the energy cascade 249

6.7 Limitations,shortcomings,and refinements 254

6.7.1 The Reynolds number 254

6.7.2 Higher-order statistics 255

6.7.3 Internal intermittency 258

6.7.4 Refined similarity hypotheses 260

6.7.5 Closing remarks 263

7 Wall flows 264

7.1 Channel flow 264

7.1.1 A description of the flow 264

7.1.2 The balance of mean forces 266

7.1.3 The near-wall shear stress 268

7.1.4 Mean velocity profiles 271

7.1.5 The friction law and the Reynolds number 278

7.1.6 Reynolds stresses 281

7.1.7 Lengthscales and the mixing length 288

7.2 Pipe flow 290

7.2.1 The friction law for smooth pipes 290

7.2.2 Wall roughness 295

7.3 Boundary layers 298

7.3.1 A description of the flow 299

7.3.2 Mean-momentum equations 300

7.3.3 Mean velocity profiles 302

7.3.4 The overlap region reconsidered 308

7.3.5 Reynolds-stress balances 313

7.3.6 Additional effects 320

7.4 Turbulent structures 322

PART TWO:MODELLING AND SIMULATION 333

8 An introduction to modelling and simulation 335

8.1 The challenge 335

8.2 An overview of approaches 336

8.3 Criteria for appraising models 336

9 Direct numerical simulation 344

9.1 Homogeneous turbulence 344

9.1.1 Pseudo-spectral methods 344

9.1.2 The computational cost 346

9.1.3 Artificial modifications and incomplete resolution 352

9.2 Inhomogeneous flows 353

9.2.1 Channel flow 353

9.2.2 Free shear flows 354

9.2.3 Flow over a backward-facing step 355

9.3 Discussion 356

10 Turbulent-viscosity models 358

10.1 The turbulent-viscosity hypothesis 359

10.1.1 The intrinsic assumption 359

10.1.2 The specific assumption 364

10.2 Algebraic models 365

10.2.1 Uniform turbulent viscosity 365

10.2.2 The mixing-length model 366

10.3 Turbulent-kinetic-energy models 369

10.4 The κ-εmodel 373

10.4.1 An overview 373

10.4.2 The model equation for ε 375

10.4.3 Discussion 382

10.5 Further turbulent-viscosity models 383

10.5.1 The κ-ω model 383

10.5.2 The Spalart-Allmaras model 385

11 Reynolds-stress and related models 387

11.1 Introduction 387

11.2 The pressure-rate-of-strain tensor 388

11.3 Return-to-isotropy models 392

11.3.1 Rotta's model 392

11.3.2 The characterization of Reynolds-stress anisotropy 393

11.3.3 Nonlinear return-to-isotropy models 398

11.4 Rapid-distortion theory 404

11.4.1 Rapid-distortion equations 405

11.4.2 The evolution of a Fourier mode 406

11.4.3 The evolution of the spectrum 411

11.4.4 Rapid distortion of initially isotropic turbulence 415

11.4.5 Final remarks 421

11.5 Pressure-rate-of-strain models 422

11.5.1 The basic model(LRR-IP) 423

11.5.2 Other pressure-rate-of-strain models 425

11.6 Extension to inhomogeneous flows 428

11.6.1 Redistribution 428

11.6.2 Reynolds-stress transport 429

11.6.3 The dissipation equation 432

11.7 Near-wall treatments 433

11.7.1 Near-wall effects 433

11.7.2 Turbulent viscosity 434

11.7.3 Model equations for κ and ε 435

11.7.4 The dissipation tensor 436

11.7.5 Fluctuating pressure 439

11.7.6 Wall functions 442

11.8 Elliptic relaxation models 445

11.9 Algebraic stress and nonlinear viscosity models 448

11.9.1 Algebraic stress models 448

11.9.2 Nonlinear turbulent viscosity 452

11.10 Discussion 457

12 PDF methods 463

12.1 The Eulerian PDF of velocity 464

12.1.1 Definitions and properties 464

12.1.2 The PDF transport equation 465

12.1.3 The PDF of the fluctuating velocity 467

12.2 The model velocity PDF equation 468

12.2.1 The generalized Langevin model 469

12.2.2 The evolution of the PDF 470

12.2.3 Corresponding Reynolds-stress models 475

12.2.4 Eulerian and Lagrangian modelling approaches 479

12.2.5 Relationships between Lagrangian and Eulerian PDFs 480

12.3 Langevin equations 483

12.3.1 Stationary isotropic turbulence 484

12.3.2 The generalized Langevin model 489

12.4 Turbulent dispersion 494

12.5 The velocity-frequency joint PDF 506

12.5.1 Complete PDF closure 506

12.5.2 The log-normal model for the turbulence frequency 507

12.5.3 The gamma-distribution model 511

12.5.4 The model joint PDF equation 514

12.6 The Lagrangian particle method 516

12.6.1 Fluid and particle systems 516

12.6.2 Corresponding equations 519

12.6.3 Estimation of means 523

12.6.4 Summary 526

12.7 Extensions 529

12.7.1 Wall functions 529

12.7.2 The near-wall elliptic-relaxation model 534

12.7.3 The wavevector model 540

12.7.4 Mixing and reaction 545

12.8 Discussion 555

13 Large-eddy simulation 558

13.1 Introduction 558

13.2 Filtering 561

13.2.1 The general definition 561

13.2.2 Filtering in one dimension 562

13.2.3 Spectral representation 565

13.2.4 The filtered energy spectrum 568

13.2.5 The resolution of filtered fields 571

13.2.6 Filtering in three dimensions 575

13.2.7 The filtered rate of strain 578

13.3 Filtered conservation equations 581

13.3.1 Conservation of momentum 581

13.3.2 Decomposition of the residual stress 582

13.3.3 Conservation of energy 585

13.4 The Smagorinsky model 587

13.4.1 The definition of the model 587

13.4.2 Behavior in the inertial subrange 587

13.4.3 The Smagorinsky filter 590

13.4.4 Limiting behaviors 594

13.4.5 Near-wall resolution 598

13.4.6 Tests of model performance 601

13.5 LES in wavenumber space 604

13.5.1 Filtered equations 604

13.5.2 Triad interactions 606

13.5.3 The spectral energy balance 609

13.5.4 The spectral eddy viscosity 610

13.5.5 Backscatter 611

13.5.6 A statistical view of LES 612

13.5.7 Resolution and modelling 615

13.6 Further residual-stress models 619

13.6.1 The dynamic model 619

13.6.2 Mixed models and variants 627

13.6.3 Transport-equation models 629

13.6.4 Implicit numerical filters 631

13.6.5 Near-wall treatments 634

13.7 Discussion 635

13.7.1 An appraisal of LES 635

13.7.2 Final perspectives 638

PART THREE:APPENDICES 641

Appendix A Cartesian tensors 643

A.1 Cartesian coordinates and vectors 643

A.2 The definition of Cartesian tensors 647

A.3 Tensor operations 649

A.4 The vector cross product 654

A.5 A summary of Cartesian-tensor suffix notation 659

Appendix B Properties of second-order tensors 661

Appendix C Dirac delta functions 670

C.1 The definition of δ(x) 670

C.2 Properties of δ(x) 672

C.3 Derivatives of δ(x) 673

C.4 Taylor series 675

C.5 The Heaviside function 675

C.6 Multiple dimensions 677

Appendix D Fourier transforms 678

Appendix E Spectral representation of stationary random processes 683

E.1 Fourier series 683

E.2 Periodic random processes 686

E.3 Non-periodic random processes 689

E.4 Derivatives of the process 690

Appendix F The discrete Fourier transform 692

Appendix G Power-law spectra 696

Appendix H Derivation of Eulerian PDF equations 702

Appendix I Characteristic functions 707

Appendix J Diffusion processes 713

Bibliography 727

Author index 749

Subject index 754

返回顶部