DATA STORAGE AT THE NANOSCALE ADVANCES AND APPLICATIONSPDF电子书下载
- 电子书积分:20 积分如何计算积分?
- 作 者:GAN FUXI WAN YANG
- 出 版 社:PAN STANFORD PUBLISHING
- 出版年份:2015
- ISBN:9814613194
- 页数:718 页
1.Overview of Information Data Storage:An Introduction&Gan Fuxi 1
1.1 Importance and Research Aims of Information Data Storage 2
1.2 Development Trends of Different Information Storage Devices 3
1.2.1 In-Line Data Storage 3
1.2.2 Storage Class Memory 5
1.2.3 Magnetic Data Storage 6
1.2.4 Rethinking of Optical Data Storage Development 7
1.3 Nanolithography for Information Storage 9
1.3.1 Characteristics of and Requirements for Nanolithography 9
1.3.2 Nanolithography by Optical Means 9
1.3.3 Advanced Optical Lithography 10
1.4 Fast Phase Change 12
1.4.1 Fast Phase Change Initiated by Ultra-Short Laser Pulse 13
1.4.2 New Application of Phase Change Process in Information Data Storage Field 15
2.Super-Resolution Optical Data Storage Using Binary Optics&Wang Haifeng and Gan Fuxi 19
2.1 Design of the Super-Resolution Binary Optics 20
2.1.1 Binary Optics Design Based on Scalar Diffraction Theory 21
2.1.2 Binary Optics Design Based on Vector Diffraction Theory 23
2.2 Generation of Super-Resolution Longitudinally Polarized Light Beamwith Binary Optics 26
2.3 Application of Binary Optics to Near-Field Recording 28
2.3.1 System Configuration for Circular Polarized Light 28
2.3.2 System Configuration for Longitudinally Polarized Light 31
2.3.3 Near-Field Recording Using Optical Antennas 33
3.Focal Spot Engineering for Bit-by-Bit Recording&Gan Xiaosong and Wu Jingzhi 39
3.1 Introduction 39
3.2 Far-Field Modulation for Super-Resolution Focal Spot 41
3.3 Saturation Microscopy 47
3.4 Breaking the Diffraction Limit Without Diffraction? 50
3.5 Discussion 53
4.Plasmonic Nanofocusing and Data Storage&Cao Qing 59
4.1 Surface Plasmon and Its Properties 59
4.1.1 Surface Plasmons 59
4.1.2 Enhanced Transmission 61
4.1.3 Metal Wire Surface Plasmon 62
4.1.4 Surface Plasmon Laser 63
4.1.5 Graphene Plasmon 64
4.2 Plasmonic Nanofocusing and Nanoimaging 64
4.2.1 Tapered Structure 64
4.2.2 Multiple Concentric Groove Metallic Lens 67
4.2.3 Metal Films for Super-Diffraction-Limited Imaging 68
4.3 Plasmonic Data Storage at the Nanoscale 70
4.3.1 Brief Introduction of High-Density Optical Data Storage 70
4.3.2 Two Basic Concepts of Plasmonic Data Storage 71
4.3.2.1 High-density data storage technology mixed with plasmonic near-field transducers and bit-patterned magnetic materials 71
4.3.2.2 Five-dimensional optical recording mediated by surface plasmons in gold nanorods 72
4.4 Plasmonic Nanolithography 74
4.4.1 Brief Introduction of Plasmonic Nanolithography 74
4.4.2 Plasmonic Contact Lithography 75
4.4.3 Imaging Lithography of Planar Lens 76
4.4.4 Plasmonic Direct Writing Nanolithography 77
5.Nano-Optical Data Storage with Nonlinear Super-Resolution Thin Films&Wei Jingsong and Gan Fuxi 91
5.1 Introduction 92
5.2 The Principle of Nonlinear Super-Resolution Nano-Optical Data Storage 93
5.3 Optical Response of the Nonlinear Layer 94
5.3.1 Nonlinear Response of Sb-Based Phase Change Thin Films 95
5.3.2 Nonlinear Response of Metal Doped Semiconductor Thin Films 98
5.3.2.1 The sample preparation 98
5.3.2.2 Measurement of the optical nonlinear properties 100
5.3.2.3 The mechanism of nonlinear response 102
5.4 The Formation of Super-Resolution Optical Spot 107
5.4.1 Theoretical Basis of Super-Resolution Spot Formation 107
5.4.2 Super-Resolution Spot Formation by Ag Doped Si Thin Films 109
5.4.3 Super-Resolution Spot Formation by Sb-Based Phase Change Thin Films 112
5.5 Experimental Results of the Nano-Optical Data Recording and Readout 114
5.6 On the Dynamic Readout Characteristic of the Nonlinear Super-Resolution Thin Films 120
5.6.1 Theoretical Analysis of the Dependence of Readout Threshold Power on Mark Size 120
5.6.2 Dependence of Readout Characteristic on Laser Power 122
5.6.3 Dependence of Readout Characteristic on Laser Irradiation Time 123
5.6.4 Analysis of the Influence of Laser Energy on Dynamic Readout Characteristic 126
5.7 Conclusion 128
6.Mastering Technology for High-Density Optical Disc&Geng Yongyou and Wu Yiqun 131
6.1 Introduction 131
6.2 Major Mastering Technologies for High-Density Optical Disc 135
6.2.1 Electron Beam Recording 135
6.2.2 UV and DUV Recording 138
6.2.3 Near-Field Optical Recording 140
6.2.4 Laser Thermal Recording 143
6.2.4.1 Mechanism of laser thermal recording 143
6.2.4.2 Materials for laser thermal recording 144
6.2.4.3 Writing strategy for laser thermal recording 162
6.2.5 STED Recording 163
6.2.5.1 Principle of STED microscopy 163
6.2.5.2 Applications in nanorecording 164
6.3 Conclusion 166
7.Laser-Induced Phase Transition and Its Application in Nano-Optical Storage&Wang Yang and Gan Fuxi 171
7.1 Introduction:Phenomena and Applications of Laser-Induced Phase Transition in the Optical Storage 171
7.1.1 Amorphous and Crystalline States for Binary Memory 173
7.1.2 Transient States for Self-Masking Super-Resolution 174
7.1.3 Meta-Stable Multi-States for Multilevel Recording 176
7.2 Physical Process of Laser-Induced Phase Transition 177
7.3 Probing Method for Laser-Induced Phase Transition Process 182
7.4 Phase Transition Dynamics Driven by Laser Pulses 185
7.4.1 Carrier Dynamics Driven by Ultrashort Laser Pulses 185
7.4.2 Laser Pulse-Induced Amorphization Process 190
7.4.3 Laser Pulse-Induced Crystallization Process 194
7.4.3.1 Comparison of optical and electrical transient response during nanosecond laser pulse-induced crystallization 194
7.4.3.2 Optical transients during the picosecond laser pulse-induced crystallization:comparison of nucleation-driven and growth-driven processes 198
7.4.3.3 Optical transients during the femtosecond laser pulse-induced crystallization 206
7.5 Phase-Change Optical Disk Technology 213
7.6 New Optical Memory Functions Based on Phase-Change Materials 221
7.6.1 Fast Cycling Driven by Ultrashort Laser Pulses with Identical Fluences 221
7.6.2 Optical-Electrical Hybrid Operation for Phase-Change Materials 224
7.6.3 Metal-Nanop article-Embedded Phase-Change Recording Pits for Plasmonics and Super-Resolution 226
7.6.4 Polarization Readout for Multilevel Phase-Change Recording by Crystallization Degree Modulation 232
7.6.5 Polarized Laser-Induced Dichroism of Phase-Change Materials 239
7.6.6 Fluorescence Multi-States of Ion-Doped Phase-Change Thin Films 246
8.SPIN-Based Optical Data Storage&Gu Min,Cao Yaoyu,Li Xiangping,and Gan Zongsong 259
8.1 SPIN Based on Single-Photon Photoinduction 264
8.1.1 Theoretical Model of the SPIN Process 264
8.1.2 Experimental Demonstration of Single-Photon SPIN 267
8.2 SPIN Based on Two-Photon Photoinduction 270
8.2.1 Experimental Demonstration of Two-Photo SPIN 271
8.2.2 Properties and Limitations 276
8.3 Conclusion 278
9.Magnetic Random Access Memory&Han Xiufeng and Syed Shahbaz Ali 281
9.1 History of the Development of MRAM Devices 281
9.2 MRAM Devices Based on GMR/AMR Effects 287
9.3 Field-Write Mode MRAM Based on TMR Effect 290
9.3.1 Astroid-Mode MRAM 292
9.3.2 Principles of Astroid-Mode MRAM 293
9.3.3 Development of Astroid-Mode MRAM 294
9.3.4 Toggle-Mode MRAM 296
9.3.5 Principles of Toggle-Mode MRAM 297
9.3.6 Write-Current Reduction in Toggle-Mode MRAM 298
9.3.7 Energy Diagram of Toggle Operation 301
9.3.8 Competitive Market 306
9.3.9 MRAM Based on Vertical Current Writing and Its Control Method 306
9.3.10 Field-Write Mode MRAM Chip-Design 307
9.4 Spin Transfer Torque MRAM Based on Nanoscale Magnetic Tunnel Junction MTJ 309
9.4.1 Spin Transfer Torque Effects 312
9.4.2 STT Effects in a Multilayer Thin-Film Stack 313
9.4.3 STT MRAM with an in-Plane Magnetic Configuration 315
9.4.4 Switching Characteristics and Threshold in MTJs 316
9.4.5 Switching Probability in the Thermal Regime 317
9.4.6 STT MRAM with a Perpendicular Magnetic Configuration 318
9.4.7 Principles of STT-MRAM with a Perpendicular Magnetic Configuration 319
9.4.8 Reliability of Tunnel Barriers in MTJs 322
9.4.9 Write-Current Reduction 323
9.4.10 Current-Write Mode MRAM Chip-Design 325
9.4.11 Introduction of the STT-MRAM Chip Design 327
9.5 Asymmetric MTJ Switching 329
9.6 Nanoring and Nano-Elliptical Ring-Shaped MTJ-Based MRAM 331
9.7 Thermally Assisted Field Write in MRAM 334
9.7.1 Self-Referenced MRAM 338
9.8 Outlook to the Future MRAM 339
9.8.1 Separated Read and Write Operation MRAM 340
9.8.2 Domain Wall Motion MRAM 340
9.8.3 Rashba Effect/Spin-Orbital Coupling Effect Based MRAM 342
9.8.4 Spin Hall Effect-Based MRAM 344
9.8.5 Electric Field Switching MRAM 346
9.8.6 Roadmap of MRAM Demo Device Development 348
10.RRAM Device and Circuit&Lin Yinyin,Song Yali,and Xue Xiaoyong 363
10.1 Introduction 363
10.2 RRAM Cell 368
10.2.1 1T1R Cell with Transistor as Selector Device 368
10.2.1.1 1T1R cell structure 368
10.2.1.2 Bipolar and unipolar operation 372
10.2.2 Cell Using Diode as Selector Device 374
10.2.2.1 1D1R cell with traditional one-directional diode as selector device for unipolar operation 374
10.2.2.2 1BD1R cell with bidirectional diode as selector device in support of both bipolar and unipolar operation 376
10.2.3 Self-Selecting RRAM Cell 379
10.2.3.1 Hybrid memory 379
10.2.3.2 Complementary-RRAM 382
10.3 Resistive Switching Mechanism 383
10.3.1 ITRS Categories of RRAM 383
10.3.2 Resistive Switching Behavior 387
10.3.3 Forming and SET Process 388
10.3.4 Filament Type 389
10.3.5 Filament Size and the Scaling Characteristics 391
10.4 Influencing Factors and Optimization of RRAM Performance 393
10.4.1 Decrease of Switching Current 393
10.4.1.1 Multilayer architecture 395
10.4.1.2 Control of the compliance current 397
10.4.2 Enhancement of Uniformity 398
10.4.2.1 Electrode effects 399
10.4.2.2 Buffer layer inserting and bilayer construct 400
10.4.2.3 Embedded metal to control conductive path 401
10.4.2.3 Programming algorithm 402
10.5 RRAM Reliability 403
10.5.1 The Retention Test Method 403
10.5.2 Retention Model and Improvement Methods 404
10.5.2.1 RRAM retention failure model 404
10.5.2.2 Retention improvement by forming high-density Vo 405
10.5.2.3 Retention improvement by dynamic self-adaptive write method 406
10.5.3 Endurance Model and Improvement Methods 408
10.5.3.1 Endurance failure model 408
10.5.3.2 High-endurance cell architecture 411
10.5.3.3 Enhancement of endurance by programming algorithm 414
10.6 Circuit Techniques for Fast Read and Write 415
10.6.1 Current SA for High-Speed Read 415
10.6.1.1 Feedback-regulated bit line biasing approach 416
10.6.1.2 Process-temperature-aware dynamic BL-bias scheme 417
10.6.2 Fast Verify for High-Speed Write 418
10.7 Yield and Reliability Enhancement Assisted by Circuit 420
10.7.1 Circuit Techniques to Improve Read Yield 420
10.7.1.1 Parallel-series reference cell 421
10.7.1.2 SARM reference 421
10.7.1.3 Body-drain-driven current sense amplifier 422
10.7.1.4 Temperature-aware bit line biasing 423
10.7.2 Circuit-Assisted Write Yield Improvement and Operation Power Reduction 425
10.7.2.1 Self-adaptive write mode 426
10.7.2.2 Self-timing write with feedback 427
10.7.3 Circuit-Assisted Endurance and Retention Improvement 428
10.7.3.1 Filament scaling forming technique and level-verify-write scheme 428
10.7.3.2 Dynamic self-adaptive write method 431
10.8 Circuit Strategies for 3D RRAM 432
10.8.1 Sneaking Path and Large Power Consumption of Conventional Cross-Bar Architecture 434
10.8.2 3D RRAM Based on 1TXR Cell without Access Transistor 435
10.8.2.1 1TXR cell 436
10.8.2.2 Array architecture 437
10.8.2.3 Write algorithm to inhibit write disturbance 438
10.8.2.4 Read algorithm to inhibit read disturbance 441
10.8.3 3D RRAM Based on 1D1R Cell 442
10.8.3.1 Array architecture 442
10.8.3.2 Write circuit with leakage compensation for accurate state-change detection 443
10.8.3.3 Read circuit with bit line capacitive isolation for fast swing in SA 444
10.8.4 3D RRAM Based on 1BD1R 445
10.8.4.1 Array architecture 445
10.8.4.2 Programming conditions for 1BD array 446
10.8.4.3 Multi-bit write architecture with write dummy cell 447
10.8.5 Vertical Stack with Cost Advantage of Lithography 448
10.8.5.1 Cross section of cell and array 448
10.8.5.2 Integration 450
10.8.5.3 Cost advantage of lithography 451
11.Phase-Change Random Access Memory&Liu Bo 463
11.1 Introduction 464
11.2 Principle of PCRAM 465
11.3 Comparisons between PCRAM and SRAM,DRAM and Flash 467
11.4 History of PCRAM R&D 470
11.5 Phase-Change Material 474
11.5.1 Materials Selective Method 474
11.5.2 GeSbTe System 476
11.5.3 SbTe-Based Materials 483
11.5.4 SiSbTe System 487
11.5.5 GeTe System 496
11.5.6 Sb-Based Materials 498
11.5.7 Nano-Composite Phase-Change Materials 501
11.5.8 Superlattice-Like Structure Phase-Change Materials 503
11.6 Memory Cell Selector 506
11.6.1 Overview 506
11.6.2 Diode 510
11.7 Memory Cell Resistor Structure 514
11.8 Processing 517
11.8.1 Deposition of Phase-Change Materials 517
11.8.2 Etching of Phase-Change Materials 519
11.8.3 Chemical Mechanical Polishing of Phase-Change Materials 523
11.9 Characteristics of PCRAM Memory Cell 528
11.9.1 Reduction of Operation Current/Voltage 528
11.9.2 Reliability 539
11.9.3 Data Retention 543
11.9.4 Speed 544
11.10 Future Outlook 546
11.10.1 Scaling Properties 547
11.10.2 Multi-Bit Operation 549
11.10.3 Three-Dimensional Integration 552
11.11 Potential Application of PCRAM 553
12.Nano-DRAM Technology for Data Storage Application&Wang Pengfei and Zhang David Wei 591
12.1 Introduction to DRAM Cell Technology 592
12.1.1 Cell Operation of DRAM Cell 592
12.1.2 DRAM Device and Array Structure 594
12.1.3 Requirements of Nano-Scale DRAM Cell 595
12.1.3.1 Capacitance of the storage node 595
12.1.3.2 Drive current and off leakage current of array access transistor 596
12.2 Nano-DRAM Memory Cell and Array Design 596
12.2.1 Layout of the Stacked-Capacitor DRAM 597
12.2.2 Design of the Array Transistor 598
12.2.2.1 RCAT and saddle-fin transistor 598
12.2.2.2 Extended U-shaped device 599
12.2.2.3 FinFET for DRAM 601
12.2.2.4 Spherical transistor and buried word line array device 602
12.2.3 Cell Architecture 603
12.2.3.1 Connection between the storage capacitor and array transistor 603
12.2.3.2 6F2 cell design 604
12.2.4 Storage Capacitor 606
12.3 Novel DRAM Concepts 606
12.3.1 Floating Body Memory Cell 608
12.3.2 Tunneling Transistor-Based Memory Cell 610
12.3.2.1 Device working principle 611
12.3.2.2 Device operation 613
12.3.2.3 Modeling of the memory access transistor of SFG DRAM:TFET 615
12.3.2.4 Capacitive coupling in the SFG DRAM cell 617
12.3.2.5 Transient behavior 618
12.3.2.6 Investigation of the integration methods 622
12.3.2.7 Self-refreshable “1” and nondestructive read properties 623
12.3.2.8 Scalability and U-shaped SFG memory 624
12.3.2.9 Extended applications of SFG:1-T Image sensor 626
12.3.2.10 Integration with logic and flash memory devices 628
12.4 Conclusions 629
13.Ferroelectric Memory&Wang Genshui,Gao Feng and Dong Xianlin 633
13.1 Introduction 633
13.2 Ferroelectricity 635
13.2.1 Historical Overview 635
13.2.2 Characteristics 637
13.2.2.1 Polarization and hysteresis 639
13.2.2.2 Domains and switching 640
13.2.2.3 Materials 642
13.2.2.4 Perovskite oxides 643
13.2.2.5 Size effects 645
13.2.2.6 Strain 646
13.2.3 Applications 647
13.3 Ferroelectric Memory 647
13.3.1 FeRAM 648
13.3.1.1 FeCapacitor 648
13.3.1.2 Depolarizing fields and critical thickness 648
13.3.1.3 FeRAM 650
13.3.2 FeFETRAM 651
13.3.3 Reliabilities 653
13.3.3.1 Retention 653
13.3.3.2 Endurance 654
13.3.3.3 Temperature-dependent dielectric anomaly 658
13.3.4 Key Technologies 663
13.3.5 Competing Memory Technologies 664
13.4 Future Prospects 665
13.4.1 Multiferroics Memory 665
13.4.2 Nanoscale Ferroelectric Memory 666
13.4.3 Organic Ferroelectric Memory 667
13.5 Conclusions 668
14.Nanomagnetic and Hybrid Information Storage&Jin Qingyuan and Ma Bin 675
14.1 Overview of Magnetic Recording and Hard Disk Drive 675
14.2 Hard Drive Technology 679
14.2.1 Inductive Magnetic Head 680
14.2.2 Magnetoresistive Head 680
14.2.3 Giant Magnetoresistive Head 682
14.3 Hard Drive Technology 687
14.3.1 Superparamagnetic Effect and Bottleneck of Longitudinal Recording Media 687
14.3.2 Perpendicular Recording Media 688
14.3.3 L10-Ordered FePt 690
14.3.4 Exchange-Coupled Composite Media 693
14.4 Emerging Magnetic Data Storage Technology 695
14.4.1 Perpendicular Magnetic Recording 695
14.4.2 Heat-Assisted Magnetic Recording 696
14.4.3 Patterned Media 699
Index 707
- 《移动智能》(加)Laurence T.Yang,(澳)Agustinus Borgy Waluyo,(日)Jianhua Ma,(澳)Ling Tan,(澳)Bala Srinivasan编著;卓力,张菁,李晓光,张新峰译 2014
- 《Starbucks咖啡王国传奇》(美)霍华萧兹(Howard Schultz),(美)朵莉琼斯杨(Dori Jones Yang)著;韩怀宗译 1998
- 《设计理论》Zhe-Xian Wan 2009
- 《结构随机振动》(美)扬(Yang,C.Y.)著;邱法维等译 1990
- 《碳酸盐岩实用分类及微相分析》杨承运(Cheng-Yun yang),卡罗兹(Carozzl Albert.V.) 1986
- 《自己动手制作Web 入门篇》(H.杨)Hazel Yang著;王大庆改编 1999
- 《自己动手制作Web 绘图/动画篇》(H.杨)Hazel Yang著;流行雨工作室改编 1999
- 《英语翻译理论与技巧 下》LOH DIAN-YANG 1958
- 《乾隆龙溪县志》(清)吴宜燮修,(清)陈 Yang,(清)王作霖修,徐炳文修 2000
- 《人生起步 年轻人就该去创造》(美)杨安泽(Andrew Yang)著 2018
- 《非线性量子力学》庞小峰编著 2009
- 《爱与意志》(美)罗洛·梅著;冯川译 1998
- 《牛虻》(英)艾·丽·伏尼契著;亚贤译 1995
- 《自杀风险管理手册》(加)库奇,(加)切希尔著 2011
- 《柴油发动机系统设计》(美)辛千凡著;(美)辛千凡译 2015
- 《WIESEL骨科手术技巧 足踝外科》(美)Sam W. Wiesel总主编;(美)Mark E. Easley主编;张长青总主译 2015
- 《永续生活 16个家的创想物语》(日)意迪著;林叶,袁璟译 2014
- 《创伤骨科》(美)威塞尔主编;张长青总主译 2015
- 《WIESEL骨科手术技巧 成人重建外科》(美)威塞尔(Sam W. Wiesel)总主编;(美)Javad Parvizi,Richard H. Rothman主编;张长青总主译 2015
- 《结直肠癌规范化诊疗 国际进展与中国实践荟萃》陈功,邱萌,张俊主编;袁瑛,黄鼎智副主编 2015