当前位置:首页 > 其他书籍
PHYSICAL METALLURGY PRINCIPLES  FOURTH EDITION
PHYSICAL METALLURGY PRINCIPLES  FOURTH EDITION

PHYSICAL METALLURGY PRINCIPLES FOURTH EDITIONPDF电子书下载

其他书籍

  • 电子书积分:20 积分如何计算积分?
  • 作 者:REZA ABBASCHIAN
  • 出 版 社:CENGAGE LEARNING
  • 出版年份:2010
  • ISBN:0495438510
  • 页数:750 页
图书介绍:
《PHYSICAL METALLURGY PRINCIPLES FOURTH EDITION》目录
标签:

CHAPTER 1 THE STRUCTURE OF METALS 1

1.1 The Structure of Metals 1

1.2 Unit Cells 2

1.3 The Body-Centered Cubic Structure BCC 3

1.4 Coordination Number of the Body-Centered Cubic Lattice 4

1.5 The Face-Centered Cubic Lattice FCC 4

1.6 The Unit Cell of the Hexagonal Closed-Packed HCP Lattice 5

1.7 Comparison of the Face-Centered Cubic and Close-Packed Hexagonal Structures 6

1.8 Coordination Number of the Systems of Closest Packing 7

1.9 Anisotropy 7

1.10 Textures or Preferred Orientations 8

1.11 Miller Indices 9

1.12 Crystal Structures of the Metallic Elements 14

1.13 The Stereographic Projection 15

1.14 Directions that Lie in a Plane 16

1.15 Planes of a Zone 17

1.16 The Wulff Net 17

1.17 Standard Projections 21

1.18 The Standard Stereographic Triangle for Cubic Crystals 24

Problems 26

References 28

CHAPTER 2 CHARACTERIZATION TECHNIQUES 29

2.1 The Bragg Law 30

2.2 Laue Techniques 33

2.3 The Rotating-Crystal Method 35

2.4 The Debye-Scherrer or Powder Method 36

2.5 The X-Ray Diffractometer 39

2.6 The Transmission Electron Microscope 40

2.7 Interactions Between the Electrons in an Electron Beam and a Metallic Specimen 46

2.8 Elastic Scattering 46

2.9 Inelastic Scattering 46

2.10 Electron Spectrum 48

2.11 The Scanning Electron Microscope 48

2.12 Topographic Contrast 50

2.13 The Picture Element Size 53

2.14 The Depth of Focus 54

2.15 Microanalysis of Specimens 55

2.16 Electron Probe X-Ray Microanalysis 55

2.17 The Characteristic X-Rays 56

2.18 Auger Electron Spectroscopy AES 58

2.19 The Scanning Transmission Electron Microscope STEM 60

Problems 60

References 61

CHAPTER 3 CRYSTAL BINDING 62

3.1 The Internal Energy of a Crystal 62

3.2 Ionic Crystals 62

3.3 The Born Theory of Ionic Crystals 63

3.4 Van Der Waals Crystals 68

3.5 Dipoles 68

3.6 Inert Cases 69

3.7 Induced Dipoles 70

3.8 The Lattice Energy of an Inert-Gas Solid 71

3.9 The Debye Frequency 72

3.10 The Zero-Point Energy 73

3.11 Dipole- Quadrupole and Quadrupole-Quadrupole Terms 75

3.12 Molecular Crystals 75

3.13 Refinements to the Born Theory of Ionic Crystals 75

3.14 Covalent and Metallic Bonding 76 Problems 80 References 81

CHAPTER 4 INTRODUCTION TO DISLOCATIONS 82

4.1 The Discrepancy Between the Theoretical and Observed Yield Stresses of Crystals 82

4.2 Dislocations 85

4.3 The Burgers Vector 93

4.4 Vector Notation for Dislocations 95

4.5 Dislocations in the Face-Centered Cubic Lattice 96

4.6 Intrinsic and Extrinsic Stacking Faults in Face-Centered Cubic Metals 101

4.7 Extended Dislocations in Hexagonal Metals 102

4.8 Climb of Edge Dislocations 102

4.9 Dislocation Intersections 104

4.10 The Stress Field of a Screw Dislocation 107

4.11 The Stress Field of an Edge Dislocation 109

4.12 The Force on a Dislocation 111

4.13 The Strain Energy of a Screw Dislocation 114

4.14 The Strain Energy of an Edge Dislocation 115

Problems 116

References 118

CHAPTER 5 DISLOCATIONS AND PLASTIC DEFORMATION 119

5.1 The Frank-Read Source 119

5.2 Nucleation of Dislocations 120

5.3 Bend Gliding 123

5.4 Rotational Slip 125

5.5 Slip Planes and Slip Directions 127

5.6 Slip Systems 129

5.7 Critical Resolved Shear Stress 129

5.8 Slip on Equivalent Slip Systems 133

5.9 The Dislocation Density 133

5.10 Slip Systems in Different Crystal Forms 133

5.11 Cross-Slip 138

5.12 Slip Bands 141

5.13 Double Cross-Slip 141

5.14 Extended Dislocations and Cross-Slip 143

5.15 Crystal Structure Rotation During Tensile and Compressive Deformation 144

5.16 The Notation for the Slip Systems in the Deformation of FCC Crystals 147

5.17 Work Hardening 149

5.18Considres Criterion 150

5.19 The Relation Between Dislocation Density and the Stress 151

5.20 Taylors Relation 153

5.21 The Orowan Equation 153

Problems 154

References 157

CHAPTER 6 ELEMENTS OF GRAIN BOUNDARIES 158

6.1 Grain Boundaries 158

6.2 Dislocation Model of a Small-Angle Grain Boundary 159

6.3 The Five Degrees of Freedom of a Grain Boundary 161

6.4 The Stress Field of a Grain Boundary 162

6.5 Grain-Boundary Energy 165

6.6 Low-Energy Dislocation Structures LEDS 167

6.7 Dynamic Recovery 170

6.8 Surface Tension of the Grain Boundary 172

6.9 Boundaries Between Crystals of Different Phases 175

6.10 The Grain Size 178

6.11 The Effect of Grain Boundaries on Mechanical PropertiesHall-Petch Relation 180

6.12 Grain Size Effects in Nanocrystalline Materials 182

6.13 Coincidence Site Boundaries 185

6.14 The Density of Coincidence Sites 186

6.15 The Ranganathan Relations 186

6.16 Examples Involving Twist Boundaries 187

6.17 Tilt Boundaries 189

Problems 192

References 193

CHAPTER 7 VACANCIES 194

7.1 Thermal Behavior of Metals 194

7.2 Internal Energy 195

7.3 Entropy 196

7.4 Spontaneous Reactions 196

7.5 Gibbs Free Energy 197

7.6 Statistical Mechanical Definition of Entropy 199

7.7 Vacancies 203

7.8 Vacancy Motion 209

7.9 Interstitial Atoms and Divacancies 211

Problems 214

References 215

CHAPTER 8 ANNEALING 216

8.1 Stored Energy of Cold Work 216

8.2 The Relationship of Free Energy to Strain Energy 217

8.3 The Release of Stored Energy 218

8.4 Recovery 220

8.5 Recovery in Single Crystals 221

8.6 Polygonization 223

8.7 Dislocation Movements in Polygonization 226

8.8 Recovery Processes at High and Low Temperatures 229

8.9 Recrystallization 230

8.10 The Effect of Time and Temperature on Recrystallization 230

8.11 Re crystallization Temperature 232

8.12 The Effect of Strain on Recrystallization 233

8.13 The Rate of Nucleation and the Rate of Nucleus Growth 234

8.14 Formation of Nuclei 235

8.15 Driving Force for Recrystallization 237

8.16 The Recrystallized Grain Size 237

8.17 Other Variables in Recrystallization 239

8.18 Purity of the Metal 239

8.19 Initial Grain Size 240

8.20 Grain Growth 240

8.21 Geometrical Coalescence 243

8.22 Three-Dimensional Changes in Grain Geometry 244

8.23 The Grain Growth Law 245

8.24 Impurity Atoms in Solid Solution 249

8.25 Impurities in the Form of Inclusions 250

8.26 The Free-Surface Effects 253

8.27 The Limiting Grain Size 254

8.28 Preferred Orientation 256

8.29 Secondary Recrystallization 256

8.30 Strain-Induced Boundary Migration 257

Problems 258

References 259

CHAPTER 9 SOLID SOLUTIONS 261

9.1 Solid Solutions 261

9.2 Intermediate Phases 261

9.3 Interstitial Solid Solutions 262

9.4 Solubility of Carbon in Body-Centered Cubic Iron 263

9.5 Substitutional Solid Solutions and the Hume-Rothery Rules 267

9.6 Interaction of Dislocations and Solute Atoms 267

9.7 Dislocation Atmospheres 268

9.8 The Formation of a Dislocation Atmosphere 269

9.9 The Evaluation of A 270

9.10 The Drag of Atmospheres on Moving Dislocations 271

9.11 The Sharp Yield Point and Lders Bands 273

9.12 The Theory of the Sharp Yield Point 275

9.13 Strain Aging 276

9.14 The Cottrell-Bilby Theory of Strain Aging 277

9.15 Dynamic Strain Aging 282

Problems 285

References 286

CHAPTER 10 PHASES 287

10.1 Basic Definitions 287

10.2 The Physical Nature of Phase Mixtures 289

10.3 Thermodynamics of Solutions 289

10.4 Equilibrium Between Two Phases 292

10.5 The Number of Phases in an Alloy System 293

10.6 Two-Component Systems Containing Two Phases 303

10.7 Graphical Determinations of Partial-Molal Free Energies 304

10.8 Two-Component Systems with Three Phases in Equilibrium 306

10.9 The Phase Rule 307

10.10 Ternary Systems 309

Problems 310

References 311

CHAPTER 11 BINARY PHASE DIAGRAMS 312

11.1 Phase Diagrams 312

11.2 Isornorphous Alloy Systems 312

11.3 The Lever Rule 314

11.4 Equilibrium Heating or Cooling of an Isomorphous Alloy 317

11.5 The Isomorphous Alloy System from the Point of View of Free Energy 319

11.6 Maxima and Minima 320

11.7 Superlattices 322

11.8 Miscibility Gaps 326

11.9 Eutectic Systems 328

11.10 The Microstructures of Eutectic Systems 329

11.11 The Peritectic Transformation 334

11.12 Monotectics 337

11.13 Other Three-Phase Reactions 338

11.14 Intermediate Phases 339

11.15 The Copper-Zinc Phase Diagram 341

11.16 Ternary Phase Diagrams 343

Problems 346

References 347

CHAPTER 12 DIFFUSION IN SUBSTITUTIONAL SOLID SOLUTIONS 348

12.1 Diffusion in an Ideal Solution 348

12.2 The Kirkendall Effect 352

12.3 Pore Formation 355

12.4 Darkens Equations 357

12.5 Ficks Second Law 360

12.6 The Matano Method 363

12.7 Determination of the Intrinsic Diffusivities 366

12.8 Self-Diffusion in Pure Metals 368

12.9 Temperature Dependence of the Diffusion Coefficient 370

12.10 Chemical Diffusion at Low-Solute Concentration 372

12.11 The Study of Chemical Diffusion Using Radioactive Tracers 374

12.12 Diffusion Along Grain Boundaries and Free Surfaces 377

12.13 Ficks First Law in Terms of a Mobility and an Effective Force 380

12.14 Diffusion in Non-Isomorphic Alloy Systems 382

Problems 386

References 388

CHAPTER 13 INTERSTITIAL DIFFUSION 389

13.1 Measurement of Interstitial Diffusivities 389

13.2 The Snoek Effect 391

13.3 Experimental Determination of the Relaxation Time 398

13.4Experimental Data 405

13.5 Anelastic Measurements at Constant Strain 405

Problems 406

References 407

CHAPTER 14 SOLIDIFICATION OF METALS 408

14.1 The Liquid Phase 408

14.2 Nucleation 411

14.3 Metallic Glasses 413

14.4 Crystal Growth from the Liquid Phase 420

14.5 The Heats of Fusion and Vaporization 421

14.6 The Nature of the Liquid-Solid Interface 423

14.7 Continuous Growth 425

14.8 Lateral Growth 427

14.9 Stable Interface Freezing 428

14.10 Dendritic Growth in Pure Metals 429

14.11 Freezing in Alloys with Planar Interface 432

14.12 The Scheil Equation 434

14.13 Dendritic Freezing in Alloys 437

14.14 Freezing of Ingots 439

14.15 The Grain Size of Castings 443

14.16 Segregation 443

14.17 Homogenization 445

14.18 Inverse Segregation 450

14.19 Porosity 450

14.20 Eutectic Freezing 454

Problems 459

References 461

CHAPTER 15 NUCLEATION AND GROWTH KINETICS 463

15.1 Nucleation of a Liquid from the Vapor, 463

15.2 The Becker-D?ring Theory, 471

15.3 Freezing, 473

15.4 Solid-State Reactions, 475

15.5 Heterogeneous Nucleation, 478

15.6 Growth Kinetics, 481

15.7Diffusion Controlled Growth, 484

15.8 Interference of Growing Precipitate Particles, 488

15.9 Interface Controlled Growth, 488

15.10 Transformations That Occur on Heating, 492

15.11 Dissolution of a Precipitate, 493

Problems, 495

References, 497

CHAPTER 16 PRECIPITATION HARDENING 498

16.1 The Significance of the Solvus Curve, 499

16.2 The Solution Treatment, 500

16.3 The Aging Treatment, 500

16.4 Development of Precipitates, 503

16.5 Aging of Al-Cu Alloys at Temperatures Above 100℃ (373 K), 506

16.6 Precipitation Sequences in Other Aluminum Alloys, 509

16.7Homogeneous Versus Heterogeneous Nucleation of Precipitates, 511

16.8 Interphase Precipitation, 512

16.9 Theories of Hardening, 515

16.10 Additional Factors in Precipitation Hardening, 516

Problems, 518

References, 519

CHAPTER 17 DEFORMATION TWINNING AND MARTENSITE REACTIONS 521

17.1 Deformation Twinning, 521

17.2 Formal Crystallographic Theory of Twinning, 524

17.3 Twin Boundaries, 530

17.4 Twin Growth, 531

17.5 Accommodation of the Twinning Shear, 533

17.6 The Significance of Twinning in Plastic Deformation, 534

17.7 The Effect of Twinning on Face-Centered Cubic Stress-Strain Curves, 535

17.8 Martensite, 537

17.9 The Bain Distortion, 538

17.10 The Martensite Transformation in an Indium-Thallium Alloy, 540

17.11 Reversibility of the Martensite Transformation, 541

17.12 Athermal Transformation, 541

17.13 Phenomenological Crystallographic Theory of Martensite Formation, 542

17.14 Irrational Nature of the Habit Plane, 548

17.15 The Iron-Nickel Martensitic Transformation, 549

17.16 Isothermal Formation of Martensite, 551

17.17 Stabilization, 551

17.18 Nucleation of Martensite Plates, 552

17.19 Growth of Martensite Plates, 553

17.20 The Effect of Stress, 553

17.21 The Effect of Plastic Deformation, 554

17.22 Thermoelastic Martensite Transformations, 554

17.23 Elastic Deformation of Thermoelastic Alloys, 556

17.24 Stress-Induced Martensite (SIM), 556

17.25 The Shape-Memory Effect, 557

Problems, 559

References, 560

CHAPTER 18 THE IRON-CARBON ALLOY SYSTEM 562

18.1 The Iron-Carbon Diagram, 562

18.2 The Proeutectoid Transformations of Austenite, 565

18.3 The Transformation of Austenite to Pearlite, 566

18.4 The Growth of Pearlite, 572

18.5 The Effect of Temperature on the Pearlite Transformation 573

18.6 Forced-Velocity Growth of Pearlite 575

18.7 The Effects of Alloying Elements on the Growth of Pearlite 578

18.8 The Rate of Nucleation of Pearlite 581

18.9 Time-Temperature-Transformation Curves 583

18.10 The Bainite Reaction 584

18.11 The Complete T-T-T Diagram of an Eutectoid Steel 591

18.12 Slowly Cooled Hypoeutectoid Steels 593

18.13 Slowly Cooled Hypereutectoid Steels 595

18.14 Isothermal Transformation Diagrams for Noneutectoid Steels 597

Problems 600

References 602

CHAPTER 19 THE HARDENING OF STEEL 603

19.1 Continuous Cooling Transformations CCT 603

19.2 Hardenability 606

19.3 The Variables that Determine the Hardenability of a Steel 614

19.4 Austenitic Grain Size 614

19.5 The Effect of Austenitic Grain Size on Hardenability 615

19.6 The Influence of Carbon Content on Hardenability 615

19.7 The Influence of Alloying Elements on Hardenability 616

19.8 The Significance of Hardenability 621

19.9 The Martensite Transformation in Steel 622

19.10 The Hardness of Iron-Carbon Martensite 627

19.11 Dimensional Changes Associated with Transformation of Martensite 631

19.12 Quench Cracks 632

19.13 Tempering 633

19.14Tempering of a Low-Carbon Steel 639

19.15 Spheroidized Cementite 641

19.16 The Effect of Tempering on Physical Properties 643

19.17 The Interrelation Between Time and Temperature in Tempering 646

19.18Secondary Hardening 646

Problems 647

References 649

CHAPTER 20 SELECTED NONFERROUS ALLOY SYSTEMS 651

20.1 Commercially Pure Copper 651

20.2 Copper Alloys 654

20.3 Copper Beryllium 658

20.4 Other Copper Alloys 659

20.5 Aluminum Alloys 659

20.6 Aluminum-Lithium Alloys 660

20.7 Titanium Alloys 668

20.8 Classification of Titanium Alloys 670

20.9 The Alpha Alloys 670

20.10 The Beta Alloys 676

20.11 The Alpha-Beta Alloys 677

20.12 Superalloys 679

20.13 Creep Strength 680

Problems 683

References 684

CHAPTER 21 FAILURE OF METALS 686

21.1 Failure by Easy Glide 686

21.2 Rupture by Necking Multiple Glide 688

21.3 The Effect of Twinning 689

21.4 Cleavage 690

21.5 The Nucleation of Cleavage Cracks 691

21.6 Propagation of Cleavage Cracks 693

21.7 The Effect of Grain Boundaries 696

21.8 The Effect of the State of Stress 698

21.9 Ductile Fractures 700

21.10 Intercrystalline Brittle Fracture 705

21.11 Blue Brittleness 705

21.12 Fatigue Failures 706

21.13 The Macroscopic Character of Fatigue Failure 706

21.14 The Rotating-Beam Fatigue Test 708

21.15 Alternating Stress Parameters 710

21.16 The Microscopic Aspects of Fatigue Failure 713

21.17 Fatigue Crack Growth 717

21.18 The Effect of Nonmetallic Inclusions 720

21.19 The Effect of Steel Microstructure on Fatigue 721

21.20 Low-Cycle Fatigue 721

21.21 The Coffin-Manson Equation 726

21.22 Certain Practical Aspects of Fatigue 727

Problems 728

References 729

APPENDICES 731

A ANGLES BETWEEN CRYSTALLOGRAPHIC PLANES IN THE CUBIC SYSTEM IN DEGREES 731

B ANGLES BETWEEN CRYSTALLOGRAPHIC PLANES FOR HEXAGONAL ELEMENTS 733

C INDICES OF THE REFLECTING PLANES FOR CUBIC STRUCTURES 734

D CONVERSION FACTORS AND CONSTANTS 734

E TWINNING ELEMENTS OF SEVERAL OF THE MORE IMPORTANT TWINNING MODES 735

F SELECTED VALUES OF INTRINSIC STACKING-FAULT ENERGY ITWIN-BOUNDARY ENERGY T GRAIN-BOUNDARY ENERGY GAND CRYSTAL-VAPOR SURFACE ENERGY FOR VARIOUS MATERIALS IN ERGS/CM2 735

LIST OF IMPORTANT SYMBOLS 737

LIST OF GREEK LETTER SYMBOLS 739

INDEX 740

返回顶部