PHYSICAL METALLURGY PRINCIPLES FOURTH EDITIONPDF电子书下载
- 电子书积分:20 积分如何计算积分?
- 作 者:REZA ABBASCHIAN
- 出 版 社:CENGAGE LEARNING
- 出版年份:2010
- ISBN:0495438510
- 页数:750 页
CHAPTER 1 THE STRUCTURE OF METALS 1
1.1 The Structure of Metals 1
1.2 Unit Cells 2
1.3 The Body-Centered Cubic Structure BCC 3
1.4 Coordination Number of the Body-Centered Cubic Lattice 4
1.5 The Face-Centered Cubic Lattice FCC 4
1.6 The Unit Cell of the Hexagonal Closed-Packed HCP Lattice 5
1.7 Comparison of the Face-Centered Cubic and Close-Packed Hexagonal Structures 6
1.8 Coordination Number of the Systems of Closest Packing 7
1.9 Anisotropy 7
1.10 Textures or Preferred Orientations 8
1.11 Miller Indices 9
1.12 Crystal Structures of the Metallic Elements 14
1.13 The Stereographic Projection 15
1.14 Directions that Lie in a Plane 16
1.15 Planes of a Zone 17
1.16 The Wulff Net 17
1.17 Standard Projections 21
1.18 The Standard Stereographic Triangle for Cubic Crystals 24
Problems 26
References 28
CHAPTER 2 CHARACTERIZATION TECHNIQUES 29
2.1 The Bragg Law 30
2.2 Laue Techniques 33
2.3 The Rotating-Crystal Method 35
2.4 The Debye-Scherrer or Powder Method 36
2.5 The X-Ray Diffractometer 39
2.6 The Transmission Electron Microscope 40
2.7 Interactions Between the Electrons in an Electron Beam and a Metallic Specimen 46
2.8 Elastic Scattering 46
2.9 Inelastic Scattering 46
2.10 Electron Spectrum 48
2.11 The Scanning Electron Microscope 48
2.12 Topographic Contrast 50
2.13 The Picture Element Size 53
2.14 The Depth of Focus 54
2.15 Microanalysis of Specimens 55
2.16 Electron Probe X-Ray Microanalysis 55
2.17 The Characteristic X-Rays 56
2.18 Auger Electron Spectroscopy AES 58
2.19 The Scanning Transmission Electron Microscope STEM 60
Problems 60
References 61
CHAPTER 3 CRYSTAL BINDING 62
3.1 The Internal Energy of a Crystal 62
3.2 Ionic Crystals 62
3.3 The Born Theory of Ionic Crystals 63
3.4 Van Der Waals Crystals 68
3.5 Dipoles 68
3.6 Inert Cases 69
3.7 Induced Dipoles 70
3.8 The Lattice Energy of an Inert-Gas Solid 71
3.9 The Debye Frequency 72
3.10 The Zero-Point Energy 73
3.11 Dipole- Quadrupole and Quadrupole-Quadrupole Terms 75
3.12 Molecular Crystals 75
3.13 Refinements to the Born Theory of Ionic Crystals 75
3.14 Covalent and Metallic Bonding 76 Problems 80 References 81
CHAPTER 4 INTRODUCTION TO DISLOCATIONS 82
4.1 The Discrepancy Between the Theoretical and Observed Yield Stresses of Crystals 82
4.2 Dislocations 85
4.3 The Burgers Vector 93
4.4 Vector Notation for Dislocations 95
4.5 Dislocations in the Face-Centered Cubic Lattice 96
4.6 Intrinsic and Extrinsic Stacking Faults in Face-Centered Cubic Metals 101
4.7 Extended Dislocations in Hexagonal Metals 102
4.8 Climb of Edge Dislocations 102
4.9 Dislocation Intersections 104
4.10 The Stress Field of a Screw Dislocation 107
4.11 The Stress Field of an Edge Dislocation 109
4.12 The Force on a Dislocation 111
4.13 The Strain Energy of a Screw Dislocation 114
4.14 The Strain Energy of an Edge Dislocation 115
Problems 116
References 118
CHAPTER 5 DISLOCATIONS AND PLASTIC DEFORMATION 119
5.1 The Frank-Read Source 119
5.2 Nucleation of Dislocations 120
5.3 Bend Gliding 123
5.4 Rotational Slip 125
5.5 Slip Planes and Slip Directions 127
5.6 Slip Systems 129
5.7 Critical Resolved Shear Stress 129
5.8 Slip on Equivalent Slip Systems 133
5.9 The Dislocation Density 133
5.10 Slip Systems in Different Crystal Forms 133
5.11 Cross-Slip 138
5.12 Slip Bands 141
5.13 Double Cross-Slip 141
5.14 Extended Dislocations and Cross-Slip 143
5.15 Crystal Structure Rotation During Tensile and Compressive Deformation 144
5.16 The Notation for the Slip Systems in the Deformation of FCC Crystals 147
5.17 Work Hardening 149
5.18Considres Criterion 150
5.19 The Relation Between Dislocation Density and the Stress 151
5.20 Taylors Relation 153
5.21 The Orowan Equation 153
Problems 154
References 157
CHAPTER 6 ELEMENTS OF GRAIN BOUNDARIES 158
6.1 Grain Boundaries 158
6.2 Dislocation Model of a Small-Angle Grain Boundary 159
6.3 The Five Degrees of Freedom of a Grain Boundary 161
6.4 The Stress Field of a Grain Boundary 162
6.5 Grain-Boundary Energy 165
6.6 Low-Energy Dislocation Structures LEDS 167
6.7 Dynamic Recovery 170
6.8 Surface Tension of the Grain Boundary 172
6.9 Boundaries Between Crystals of Different Phases 175
6.10 The Grain Size 178
6.11 The Effect of Grain Boundaries on Mechanical PropertiesHall-Petch Relation 180
6.12 Grain Size Effects in Nanocrystalline Materials 182
6.13 Coincidence Site Boundaries 185
6.14 The Density of Coincidence Sites 186
6.15 The Ranganathan Relations 186
6.16 Examples Involving Twist Boundaries 187
6.17 Tilt Boundaries 189
Problems 192
References 193
CHAPTER 7 VACANCIES 194
7.1 Thermal Behavior of Metals 194
7.2 Internal Energy 195
7.3 Entropy 196
7.4 Spontaneous Reactions 196
7.5 Gibbs Free Energy 197
7.6 Statistical Mechanical Definition of Entropy 199
7.7 Vacancies 203
7.8 Vacancy Motion 209
7.9 Interstitial Atoms and Divacancies 211
Problems 214
References 215
CHAPTER 8 ANNEALING 216
8.1 Stored Energy of Cold Work 216
8.2 The Relationship of Free Energy to Strain Energy 217
8.3 The Release of Stored Energy 218
8.4 Recovery 220
8.5 Recovery in Single Crystals 221
8.6 Polygonization 223
8.7 Dislocation Movements in Polygonization 226
8.8 Recovery Processes at High and Low Temperatures 229
8.9 Recrystallization 230
8.10 The Effect of Time and Temperature on Recrystallization 230
8.11 Re crystallization Temperature 232
8.12 The Effect of Strain on Recrystallization 233
8.13 The Rate of Nucleation and the Rate of Nucleus Growth 234
8.14 Formation of Nuclei 235
8.15 Driving Force for Recrystallization 237
8.16 The Recrystallized Grain Size 237
8.17 Other Variables in Recrystallization 239
8.18 Purity of the Metal 239
8.19 Initial Grain Size 240
8.20 Grain Growth 240
8.21 Geometrical Coalescence 243
8.22 Three-Dimensional Changes in Grain Geometry 244
8.23 The Grain Growth Law 245
8.24 Impurity Atoms in Solid Solution 249
8.25 Impurities in the Form of Inclusions 250
8.26 The Free-Surface Effects 253
8.27 The Limiting Grain Size 254
8.28 Preferred Orientation 256
8.29 Secondary Recrystallization 256
8.30 Strain-Induced Boundary Migration 257
Problems 258
References 259
CHAPTER 9 SOLID SOLUTIONS 261
9.1 Solid Solutions 261
9.2 Intermediate Phases 261
9.3 Interstitial Solid Solutions 262
9.4 Solubility of Carbon in Body-Centered Cubic Iron 263
9.5 Substitutional Solid Solutions and the Hume-Rothery Rules 267
9.6 Interaction of Dislocations and Solute Atoms 267
9.7 Dislocation Atmospheres 268
9.8 The Formation of a Dislocation Atmosphere 269
9.9 The Evaluation of A 270
9.10 The Drag of Atmospheres on Moving Dislocations 271
9.11 The Sharp Yield Point and Lders Bands 273
9.12 The Theory of the Sharp Yield Point 275
9.13 Strain Aging 276
9.14 The Cottrell-Bilby Theory of Strain Aging 277
9.15 Dynamic Strain Aging 282
Problems 285
References 286
CHAPTER 10 PHASES 287
10.1 Basic Definitions 287
10.2 The Physical Nature of Phase Mixtures 289
10.3 Thermodynamics of Solutions 289
10.4 Equilibrium Between Two Phases 292
10.5 The Number of Phases in an Alloy System 293
10.6 Two-Component Systems Containing Two Phases 303
10.7 Graphical Determinations of Partial-Molal Free Energies 304
10.8 Two-Component Systems with Three Phases in Equilibrium 306
10.9 The Phase Rule 307
10.10 Ternary Systems 309
Problems 310
References 311
CHAPTER 11 BINARY PHASE DIAGRAMS 312
11.1 Phase Diagrams 312
11.2 Isornorphous Alloy Systems 312
11.3 The Lever Rule 314
11.4 Equilibrium Heating or Cooling of an Isomorphous Alloy 317
11.5 The Isomorphous Alloy System from the Point of View of Free Energy 319
11.6 Maxima and Minima 320
11.7 Superlattices 322
11.8 Miscibility Gaps 326
11.9 Eutectic Systems 328
11.10 The Microstructures of Eutectic Systems 329
11.11 The Peritectic Transformation 334
11.12 Monotectics 337
11.13 Other Three-Phase Reactions 338
11.14 Intermediate Phases 339
11.15 The Copper-Zinc Phase Diagram 341
11.16 Ternary Phase Diagrams 343
Problems 346
References 347
CHAPTER 12 DIFFUSION IN SUBSTITUTIONAL SOLID SOLUTIONS 348
12.1 Diffusion in an Ideal Solution 348
12.2 The Kirkendall Effect 352
12.3 Pore Formation 355
12.4 Darkens Equations 357
12.5 Ficks Second Law 360
12.6 The Matano Method 363
12.7 Determination of the Intrinsic Diffusivities 366
12.8 Self-Diffusion in Pure Metals 368
12.9 Temperature Dependence of the Diffusion Coefficient 370
12.10 Chemical Diffusion at Low-Solute Concentration 372
12.11 The Study of Chemical Diffusion Using Radioactive Tracers 374
12.12 Diffusion Along Grain Boundaries and Free Surfaces 377
12.13 Ficks First Law in Terms of a Mobility and an Effective Force 380
12.14 Diffusion in Non-Isomorphic Alloy Systems 382
Problems 386
References 388
CHAPTER 13 INTERSTITIAL DIFFUSION 389
13.1 Measurement of Interstitial Diffusivities 389
13.2 The Snoek Effect 391
13.3 Experimental Determination of the Relaxation Time 398
13.4Experimental Data 405
13.5 Anelastic Measurements at Constant Strain 405
Problems 406
References 407
CHAPTER 14 SOLIDIFICATION OF METALS 408
14.1 The Liquid Phase 408
14.2 Nucleation 411
14.3 Metallic Glasses 413
14.4 Crystal Growth from the Liquid Phase 420
14.5 The Heats of Fusion and Vaporization 421
14.6 The Nature of the Liquid-Solid Interface 423
14.7 Continuous Growth 425
14.8 Lateral Growth 427
14.9 Stable Interface Freezing 428
14.10 Dendritic Growth in Pure Metals 429
14.11 Freezing in Alloys with Planar Interface 432
14.12 The Scheil Equation 434
14.13 Dendritic Freezing in Alloys 437
14.14 Freezing of Ingots 439
14.15 The Grain Size of Castings 443
14.16 Segregation 443
14.17 Homogenization 445
14.18 Inverse Segregation 450
14.19 Porosity 450
14.20 Eutectic Freezing 454
Problems 459
References 461
CHAPTER 15 NUCLEATION AND GROWTH KINETICS 463
15.1 Nucleation of a Liquid from the Vapor, 463
15.2 The Becker-D?ring Theory, 471
15.3 Freezing, 473
15.4 Solid-State Reactions, 475
15.5 Heterogeneous Nucleation, 478
15.6 Growth Kinetics, 481
15.7Diffusion Controlled Growth, 484
15.8 Interference of Growing Precipitate Particles, 488
15.9 Interface Controlled Growth, 488
15.10 Transformations That Occur on Heating, 492
15.11 Dissolution of a Precipitate, 493
Problems, 495
References, 497
CHAPTER 16 PRECIPITATION HARDENING 498
16.1 The Significance of the Solvus Curve, 499
16.2 The Solution Treatment, 500
16.3 The Aging Treatment, 500
16.4 Development of Precipitates, 503
16.5 Aging of Al-Cu Alloys at Temperatures Above 100℃ (373 K), 506
16.6 Precipitation Sequences in Other Aluminum Alloys, 509
16.7Homogeneous Versus Heterogeneous Nucleation of Precipitates, 511
16.8 Interphase Precipitation, 512
16.9 Theories of Hardening, 515
16.10 Additional Factors in Precipitation Hardening, 516
Problems, 518
References, 519
CHAPTER 17 DEFORMATION TWINNING AND MARTENSITE REACTIONS 521
17.1 Deformation Twinning, 521
17.2 Formal Crystallographic Theory of Twinning, 524
17.3 Twin Boundaries, 530
17.4 Twin Growth, 531
17.5 Accommodation of the Twinning Shear, 533
17.6 The Significance of Twinning in Plastic Deformation, 534
17.7 The Effect of Twinning on Face-Centered Cubic Stress-Strain Curves, 535
17.8 Martensite, 537
17.9 The Bain Distortion, 538
17.10 The Martensite Transformation in an Indium-Thallium Alloy, 540
17.11 Reversibility of the Martensite Transformation, 541
17.12 Athermal Transformation, 541
17.13 Phenomenological Crystallographic Theory of Martensite Formation, 542
17.14 Irrational Nature of the Habit Plane, 548
17.15 The Iron-Nickel Martensitic Transformation, 549
17.16 Isothermal Formation of Martensite, 551
17.17 Stabilization, 551
17.18 Nucleation of Martensite Plates, 552
17.19 Growth of Martensite Plates, 553
17.20 The Effect of Stress, 553
17.21 The Effect of Plastic Deformation, 554
17.22 Thermoelastic Martensite Transformations, 554
17.23 Elastic Deformation of Thermoelastic Alloys, 556
17.24 Stress-Induced Martensite (SIM), 556
17.25 The Shape-Memory Effect, 557
Problems, 559
References, 560
CHAPTER 18 THE IRON-CARBON ALLOY SYSTEM 562
18.1 The Iron-Carbon Diagram, 562
18.2 The Proeutectoid Transformations of Austenite, 565
18.3 The Transformation of Austenite to Pearlite, 566
18.4 The Growth of Pearlite, 572
18.5 The Effect of Temperature on the Pearlite Transformation 573
18.6 Forced-Velocity Growth of Pearlite 575
18.7 The Effects of Alloying Elements on the Growth of Pearlite 578
18.8 The Rate of Nucleation of Pearlite 581
18.9 Time-Temperature-Transformation Curves 583
18.10 The Bainite Reaction 584
18.11 The Complete T-T-T Diagram of an Eutectoid Steel 591
18.12 Slowly Cooled Hypoeutectoid Steels 593
18.13 Slowly Cooled Hypereutectoid Steels 595
18.14 Isothermal Transformation Diagrams for Noneutectoid Steels 597
Problems 600
References 602
CHAPTER 19 THE HARDENING OF STEEL 603
19.1 Continuous Cooling Transformations CCT 603
19.2 Hardenability 606
19.3 The Variables that Determine the Hardenability of a Steel 614
19.4 Austenitic Grain Size 614
19.5 The Effect of Austenitic Grain Size on Hardenability 615
19.6 The Influence of Carbon Content on Hardenability 615
19.7 The Influence of Alloying Elements on Hardenability 616
19.8 The Significance of Hardenability 621
19.9 The Martensite Transformation in Steel 622
19.10 The Hardness of Iron-Carbon Martensite 627
19.11 Dimensional Changes Associated with Transformation of Martensite 631
19.12 Quench Cracks 632
19.13 Tempering 633
19.14Tempering of a Low-Carbon Steel 639
19.15 Spheroidized Cementite 641
19.16 The Effect of Tempering on Physical Properties 643
19.17 The Interrelation Between Time and Temperature in Tempering 646
19.18Secondary Hardening 646
Problems 647
References 649
CHAPTER 20 SELECTED NONFERROUS ALLOY SYSTEMS 651
20.1 Commercially Pure Copper 651
20.2 Copper Alloys 654
20.3 Copper Beryllium 658
20.4 Other Copper Alloys 659
20.5 Aluminum Alloys 659
20.6 Aluminum-Lithium Alloys 660
20.7 Titanium Alloys 668
20.8 Classification of Titanium Alloys 670
20.9 The Alpha Alloys 670
20.10 The Beta Alloys 676
20.11 The Alpha-Beta Alloys 677
20.12 Superalloys 679
20.13 Creep Strength 680
Problems 683
References 684
CHAPTER 21 FAILURE OF METALS 686
21.1 Failure by Easy Glide 686
21.2 Rupture by Necking Multiple Glide 688
21.3 The Effect of Twinning 689
21.4 Cleavage 690
21.5 The Nucleation of Cleavage Cracks 691
21.6 Propagation of Cleavage Cracks 693
21.7 The Effect of Grain Boundaries 696
21.8 The Effect of the State of Stress 698
21.9 Ductile Fractures 700
21.10 Intercrystalline Brittle Fracture 705
21.11 Blue Brittleness 705
21.12 Fatigue Failures 706
21.13 The Macroscopic Character of Fatigue Failure 706
21.14 The Rotating-Beam Fatigue Test 708
21.15 Alternating Stress Parameters 710
21.16 The Microscopic Aspects of Fatigue Failure 713
21.17 Fatigue Crack Growth 717
21.18 The Effect of Nonmetallic Inclusions 720
21.19 The Effect of Steel Microstructure on Fatigue 721
21.20 Low-Cycle Fatigue 721
21.21 The Coffin-Manson Equation 726
21.22 Certain Practical Aspects of Fatigue 727
Problems 728
References 729
APPENDICES 731
A ANGLES BETWEEN CRYSTALLOGRAPHIC PLANES IN THE CUBIC SYSTEM IN DEGREES 731
B ANGLES BETWEEN CRYSTALLOGRAPHIC PLANES FOR HEXAGONAL ELEMENTS 733
C INDICES OF THE REFLECTING PLANES FOR CUBIC STRUCTURES 734
D CONVERSION FACTORS AND CONSTANTS 734
E TWINNING ELEMENTS OF SEVERAL OF THE MORE IMPORTANT TWINNING MODES 735
F SELECTED VALUES OF INTRINSIC STACKING-FAULT ENERGY ITWIN-BOUNDARY ENERGY T GRAIN-BOUNDARY ENERGY GAND CRYSTAL-VAPOR SURFACE ENERGY FOR VARIOUS MATERIALS IN ERGS/CM2 735
LIST OF IMPORTANT SYMBOLS 737
LIST OF GREEK LETTER SYMBOLS 739
INDEX 740
- 《机器学习 理论 实践与提高》(法)马西-雷萨·阿米尼(Massih-Reza Amini) 2018
- 《PHYSICAL METALLURGY PRINCIPLES FOURTH EDITION》REZA ABBASCHIAN 2010
- 《BUSINESS AND ECONOMIC FORECASTING FOR THE INFORMATION AGE A PRACTICAL APPROACH》A.REZA HOSHMAND 2002
- 《GRAIN REFINEMENT IN CASTINGS AND WELDS》EDITED BY G.J.ABBASCHIAN AND S.A.DAVID 2222
- 《MODERN NETWORK ANALYSIS》FAZLOLLAH M.REZA SAMUEL SEELY 2222
- 《ENCYCLOPEDIA OF THE EYE VOLUME 2 D-L》DARLENE A. DARTT JOSEPH C.BESHARSE REZA DANA 2010
- 《VOLUME 4 R-Z ENCYCLOPEDIA OF THE EYE》DARLENE A.DARTT JOSEPH C.BESHARSE REZA DANA 2010
- 《THIN FILM TRANSISTOR CIRCUITS AND SYSTEMS》REZA CHAJI AND AROKIA NATHAN 2013
- 《Measurement and instrumentation theory and application》Alan S. Morris ; Reza Langari 2016
- 《Fundamentals of gas shale reservoirs》Reza Rezaee 2015
- 《R语言机器学习 原书第2版=MACHINE LEARNING USING R WITH TIME SERIES AND INDUSTRY-BASED USE CASES IN R》SECOND EDITION
- 《机器学习实战 基于SOPHON平台的机器学习理论与实践=MACHINE LEARNING IN ACTION PRINCIPLES AND PRACTICE BASED ON TH》星环科技人工智能平台团队编著 2020
- 《RPA学习指南:使用UIPATH构建软件机器人与自动化业务流程=LEARNING ROBOTIC PROCESS AUTOMATION》(英)ALOK MANI TRIPATHI著 2020
- 《MOONSHOTS IN EDUCATION LAUNCHING BLENDED LEARNING IN THE COASSROOM》ESTHER WOJCICKI AND LANCE LZUMI 2015
- 《ASTD培训经理指南》(美)伊莱恩·碧柯主编;顾立民,李家强,胡丽等译 2012
- 《英语评估与测试 九年级》苏沙平主编 2005
- 《移动语言学习概论》翁克山,李青著 2014
- 《Learning PHP设计模式》(美)桑德著 2014
- 《教育数据挖掘方法与应用》葛道凯,张少刚,魏顺平著 2012
- 《从经验中学习 Learning from experience》Wilfred R. Bion著;刘时宁译 2006