应用微积分 第2版PDF电子书下载
- 电子书积分:14 积分如何计算积分?
- 作 者:吴肇基主编;陈卫忠副主编
- 出 版 社:南京:东南大学出版社
- 出版年份:2005
- ISBN:7564100656
- 页数:408 页
目录 1
1 一元函数 极限 连续 1
1.1 一元函数 1
1.1.1 一元函数的概念 1
1.1.2 函数的一些性态 2
1.1.3 初等函数与非初等函数 3
1.1.4 由实际问题产生的一元函数 8
1.2 极限 11
1.2.1 数列的极限 12
1.2.2 函数f(x)当x→∞时的极限 14
1.2.3 函数f(x)当x→x0时的极限 15
1.3 极限的性质和运算法则 18
1.3.1 无穷小和无穷大 18
1.3.2 极限的性质与极限的运算法则 20
1.3.3 极限的存在准则两个重要极限 25
1.4 无穷小的比较 30
1.5 函数的连续性 32
1.5.1 函数连续性的概念 32
1.5.2 连续函数的运算 35
1.6 闭区间上连续函数的性质 38
2.1.1 导数概念的引出 41
2.1 导数的概念 41
2 一元函数微分学 41
2.1.2 导数的定义 42
2.1.3 可导与连续的关系 43
2.2 求导法则 45
2.2.1 函数的和、差、积、商的求导法则 45
2.2.2 反函数的导数 48
2.2.3 复合函数的导数 50
2.2.4 隐函数及由参数方程所确定的函数的导数 52
2.2.5 高阶导数 55
2.3.1 微分的定义 61
2.3 函数的微分 61
2.3.2 微分的公式与运算法则 62
2.3.3 微分在近似计算中的应用 64
2.4 微分中值定理及导数的应用 66
2.4.1 微分中值定理 66
2.4.2 泰勒公式 68
2.4.3 洛必达法则 70
2.4.4 函数的单调性和极值 74
2.4.5 函数的最大值和最小值 79
2.4.6 曲线的凹凸性与拐点 81
2.4.7 函数图形的描绘 83
2.4.8 曲率 87
2.4.9 一元函数微分学在经济中的应用 90
3 一元函数积分学 98
3.1 不定积分的概念与性质 98
3.1.1 原函数与不定积分的概念 98
3.1.2 不定积分的性质 100
3.1.3 基本积分公式 101
3.2 换元积分法 104
3.2.1 第一类换元积分法 104
3.2.2 第二类换元积分法 110
3.3 分部积分法 116
3.4 定积分的概念与性质 121
3.4.1 定积分的引例 121
3.4.2 定积分的定义 122
3.4.3 定积分的性质 123
3.5 微积分的基本定理 126
3.5.1 变上限定积分及其导数 126
3.5.2 牛顿—莱布尼兹公式 128
3.6 定积分的换元积分法与分部积分法 131
3.6.1 定积分的换元积分法 131
3.6.2 定积分的分部积分法 133
3.7.1 无穷区间上的广义积分 135
3.7 广义积分 135
3.7.2 无界函数的广义积分 138
3.8 定积分的应用 139
3.8.1 平面图形的面积 140
3.8.2 体积、平面曲线的弧长 143
3.8.3 定积分在物理中的应用举例 147
3.8.4 定积分在经济中的应用举例 148
4 微分方程 152
4.1 微分方程的基本概念 152
4.2 一阶微分方程 154
4.2.1 可分离变量方程 154
4.2.2 一阶线性微分方程 156
4.2.3 可降阶的二阶微分方程 158
4.3 常系数线性微分方程 160
4.3.1 线性微分方程解的结构 160
4.3.2 二阶常系数线性齐次微分方程 162
4.3.3 二阶常系数线性非齐次方程 163
4.3.4 常系数线性差分方程 166
4.4 微分方程在数学建模中的应用 170
4.4.1 几何应用 170
4.4.2 物理应用 171
4.4.3 其他应用 174
5.1.2 向量及其坐标表示 177
5.1.1 空间直角坐标系 177
5 向量代数 空间解析几何 177
5.1 空间直角坐标系及向量 177
5.1.3 两向量的数量积 182
5.1.4 两向量的向量积 184
5.2 平面及其方程 189
5.2.1 平面的点法式方程 189
5.2.2 平面的一般方程 190
5.3 空间直线及其方程 193
5.3.1 空间直线的点向式方程 193
5.3.2 空间直线的一般方程 194
5.4.1 二次曲面 198
5.4 空间曲面与曲线简介 198
5.4.2 空间曲线 202
6 多元函数微分学 206
6.1 多元函数的概念二元函数的极限和连续性 206
6.1.1 多元函数的概念 206
6.1.2 二元函数的极限 209
6.1.3 二元函数的连续性 210
6.2 偏导数 212
6.2.1 二元函数偏导数的定义及其计算 212
6.2.2 高阶偏导数 216
6.3.1 全微分的定义 220
6.3 全微分及其在近似计算中的应用 220
6.3.2 全微分在近似计算中的应用 222
6.4 多元复合函数与隐函数的求导法 224
6.4.1 多元复合函数的求导法 224
6.4.2 隐函数的求导法 231
6.5 偏导数的应用 236
6.5.1 偏导数的几何应用 236
6.5.2 多元函数的极值 240
7.1 二重积分的概念与性质 247
7.1.1 二重积分的概念 247
7 多元函数积分学 247
7.1.2 二重积分的性质 249
7.2 二重积分的计算法 251
7.2.1 直角坐标系下二重积分的计算法 251
7.2.2 极坐标系下二重积分的计算法 259
7.3 二重积分的应用 267
7.3.1 曲面的面积 267
7.3.2 平面薄片的重心 271
7.4 对弧长的曲线积分 273
7.4.1 对弧长的曲线积分的概念与性质 273
7.4.2 对弧长的曲线积分的计算方法 274
7.5.1 对坐标的曲线积分的概念与性质 278
7.5 对坐标的曲线积分 278
7.5.2 对坐标的曲线积分的计算方法 280
7.6 格林公式平面曲线积分与路径无关的条件 284
7.6.1 格林公式 285
7.6.2 平面曲线积分与路径无关的条件 289
8 无穷级数 296
8.1 无穷数项级数的概念与性质 296
8.1.1 基本概念 296
8.1.2 无穷级数的基本性质 298
8.2 正项级数及其审敛法 300
8.3.1 交错级数 305
8.3 任意项级数 305
8.3.2 绝对收敛与条件收敛 306
8.4 幂级数 308
8.4.1 函数项级数的一般概念 308
8.4.2 幂级数及其收敛性 309
8.4.3 幂级数的运算 313
8.5 把函数展开为泰勒级数 315
8.5.1 泰勒级数和麦克劳林级数 315
8.5.2 把函数展开为泰勒级数(麦克劳林级数) 317
8.6.1 三角级数及三角函数系的正交性 321
8.6 三角级数 321
8.6.2 把周期为2π的函数展开为傅里叶级数 322
8.6.3 奇函数与偶函数的傅里叶级数 324
8.6.4 把周期为T的函数展开为傅里叶级数 327
9 数学实验 331
9.1 数学软件Mathematica简介 331
9.1.1 Mathematica的基本菜单 332
9.1.2 Mathematica的基本命令 332
9.2 数学实验 335
实验一 用数学软件绘制基本初等函数图形,求方程的近似根 335
实验二 用数学软件求导数、微分和极限,绘制一元函数图形,用泰勒公式逼近函数 339
实验三 用数学软件求不定积分、定积分、广义积分及积分的近似值 343
实验四 用数学软件求解常微分方程的通解和特解 346
实验五 用数学软件进行向量运算,绘制空间曲面与曲线的图形 350
实验六 用数学软件求偏导数和全微分,最小二乘法 354
实验七 用数学软件求二重积分 357
实验八 用数学软件求级数之和,把函数展开为幂级数,用傅里叶级数部分和逼近周期函数 361
附录 368
附录一 极坐标系简介 368
附录二 复数简介 373
习题答案 378
- 《钒产业技术及应用》高峰,彭清静,华骏主编 2019
- 《现代水泥技术发展与应用论文集》天津水泥工业设计研究院有限公司编 2019
- 《英汉翻译理论的多维阐释及应用剖析》常瑞娟著 2019
- 《数据库技术与应用 Access 2010 微课版 第2版》刘卫国主编 2020
- 《区块链DAPP开发入门、代码实现、场景应用》李万胜著 2019
- 《虚拟流域环境理论技术研究与应用》冶运涛蒋云钟梁犁丽曹引等编著 2019
- 《当代翻译美学的理论诠释与应用解读》宁建庚著 2019
- 《第一性原理方法及应用》李青坤著 2019
- 《教师教育系列教材 心理学原理与应用 第2版 视频版》郑红,倪嘉波,刘亨荣编;陈冬梅责编 2020
- 《物联网与嵌入式技术及其在农业上的应用》马德新 2019