当前位置:首页 > 数理化
怎样解题
怎样解题

怎样解题PDF电子书下载

数理化

  • 电子书积分:11 积分如何计算积分?
  • 作 者:(美)波利亚(G. Polya)著;阎育苏译
  • 出 版 社:北京:科学出版社
  • 出版年份:1982
  • ISBN:13031·1804
  • 页数:255 页
图书介绍:
《怎样解题》目录
标签:解题

第一部分 在教室中 1

目的 1

1.帮助学生 1

2.问题、建议、思维活动 1

3.普遍性 2

4.常识 3

5.教师与学生,模仿与实践 4

主要部分,主要问题 5

6.四个阶段 5

9.弄清问题 6

8.例子 7

9.拟定计划 8

10.例子 10

11.实现计划 12

12.例子 14

13.回顾 15

14.例子 16

15.不同的方法 19

16.教师提问的方法 21

17.好问题与坏问题 22

更多的例子 23

18.一个作图题 23

19.一个证明题 25

20.一个速率问题 30

2.深入理解问题 34

第二部分 怎样解题——一段对话 34

1.熟悉问题 34

3.探索有益的念头 35

4.实现计划 36

5.回顾 37

第三部分 探索法小词典 38

1.类比 38

2.辅助元素 46

3.辅助问题 51

4.波尔查诺(Bolzano) 57

5.好念头 58

6.你能检验这结果吗? 59

7.你能用不同方式导出这一结果吗? 61

8.你能利用这个结果吗? 64

9.实现 67

10.条件 71

11.矛盾 72

12.推论 72

13.你能从已知数据导出某些有用的东西吗? 72

14.你能重新叙述这个问题吗? 74

15.分解与重新组合 75

16.定义 85

17.笛卡尔 92

18.决心,希望,成功 92

20.你是否利用了所有的已知数? 94

19.诊断 94

21.你知道一个与此有关的问题吗? 97

22.画张图 98

23.检验你的猜测 98

24.图形 103

25.普遍化 107

26.你以前见过它吗? 109

27.这里有个与你的问题有关且早巳解决的问题 110

28.探索法 112

29.探索式论证 112

30.如果你不能解决所提出的问题 113

31.归纳与数学归纳法 114

32.发明家的矛盾 121

33.能满足条件吗? 122

34.莱布尼兹 123

35.引理 123

36.看着未知数 124

37.现代探索法 130

38.符号 134

39.帕扑斯 141

40.拘泥与精通 147

41.实际问题 148

42.求解题,求证题 153

43.进展与成就 156

44.谜语 159

45.归谬法与间接证明 161

46.多余 170

47.代公式问题 170

48.发明创造的规律 171

49.风格的规律 172

50.教学的规律 172

51.把条件的各个部分分开 172

52.建立方程 173

53.进展的标志 177

54.特殊化 190

55.潜意识的工作 196

56.对称 198

57.新术语和老术语 199

58.量纲检验 202

59.未来的数学家 204

60.聪明的解题者 206

61.聪明的读者 207

62.传统的数学教授 208

63.问题的变化 208

64.未知数是什么? 214

65.为什么要证明? 215

66.谚语的智慧 221

67.倒着干 226

第四部分 问题,提示,解答 235

1.问题 235

2.提示 239

3.解答 243

返回顶部