偏微分方程 第1卷 第2版 英文PDF电子书下载
- 电子书积分:19 积分如何计算积分?
- 作 者:(美)泰勒著
- 出 版 社:北京/西安:世界图书出版公司
- 出版年份:2014
- ISBN:9787510068133
- 页数:654 页
1 Basic Theory of ODE and Vector Fields 1
1 The derivative 3
2 Fundamental local existence theorem for ODE 9
3 Inverse function and implicit function theorems 12
4 Constant-coefficient linear systems;exponentiation of matrices 16
5 Variable-coefficient linear systems of ODE:Duhamel's principle 26
6 Dependence of solutions on initial data and on other parameters 31
7 Flows and vector fields 35
8 Lie brackets 40
9 Commuting flows;Frobenius's theorem 43
10 Hamiltonian systems 47
11 Geodesics 51
12 Variational problems and the stationary action principle 59
13 Differential forms 70
14 The symplectic form and canonical transformations 83
15 First-order,scalar,nonlinear PDE 89
16 Completely integrable hamiltonian systems 96
17 Examples of integrable systems;central force problems 101
18 Relativistic motion 105
19 Topological applications of differential forms 110
20 Critical points and index of a vector field 118
A Nonsmooth vector fields 122
References 125
2 The Laplace Equation and Wave Equation 127
1 Vibrating strings and membranes 129
2 The divergence of a vector field 140
3 The covariant derivative and divergence of tensor fields 145
4 The Laplace operator on a Riemannian manifold 153
5 The wave equation on a product manifold and energy conservation 156
6 Uniqueness and finitepropagation speed 162
7 Lorentz manifolds and stress-energy tensors 166
8 More general hyperbolic equations;energy estimates 172
9 The symbol of a differential operator and a general Green-Stokes formula 176
10 The Hodge Laplacian on k-forms 180
11 Maxwell's equations 184
References 194
3 Fourier Analysis,Distributions,and Constant-Coefficient LinearPDE 197
1 Fourier series 198
2 Harmonic functions and holomorphic functions in the plane 209
3 The Fourier transform 222
4 Distributions and tempered distributions 230
5 The classical evolution equations 244
6 Radial distributions,polar coordinates,and Bessel functions 263
7 The method ofimages and Poisson's summation formula 273
8 Homogeneous distributions and principal value distributions 278
9 Elliptic operators 286
10 Local solvability of constant-coefficient PDE 289
11 The discrete Fourier transform 292
12 The fast Fourier transform 301
A The mighty Gaussian and the sublime gamma function 306
References 312
4 Sobolev Spaces 315
1 Sobolev spaces on Rn 315
2 The complex interpolation method 321
3 Sobolev spaces on compact manifolds 328
4 Sobolev spaces on bounded domains 331
5 The Sobolev spaces Hs 0(Ω) 338
6 The Schwartz kernel theorem 345
7 Sobolev spaces on rough domains 349
References 351
5 Linear Elliptic Equations 353
1 Existence and regularity of solutions to the Dirichlet problem 354
2 The weak and strong maximum principles 364
3 The Dirichlet problem on the ball in Rn 373
4 The Riemann mapping theorem(smooth boundary) 379
5 The Dirichlet problem on a domain with a rough boundary 383
6 The Riemann mapping theorem(rough boundary) 398
7 The Neumann boundary problem 402
8 The Hodge decomposition and harmonic forms 410
9 Natural boundary problems for the Hodge Laplacian 421
10 Isothermal coordinates and conformal structures on surfaces 438
11 General elliptic boundary problems 441
12 Operator properties of regular boundary problems 462
A Spaces of generalized functions on manifolds with boundary 471
B The Mayer-Vietoris sequence in de Rham cohomology 475
References 478
6 Linear Evolution Equations 481
1 The heat equation and the wave equation on bounded domains 482
2 The heat equation and wave equation on unbounded domains 490
3 Maxwell's equations 496
4 The Cauchy-Kowalewsky theorem 499
5 Hyperbolic systems 504
6 Geometrical optics 510
7 The formation of caustics 518
8 Boundary layer phenomena for the heat semigroup 535
A Some Banach spaces of harmonic functions 541
B The stationary phase method 543
References 545
A Outline of Functional Analysis 549
1 Banach spaces 549
2 Hilbert spaces 556
3 Fréchet spaces;locally convex spaces 561
4 Duality 564
5 Linear operators 571
6 Compact operators 579
7 Fredholm operators 593
8 Unbounded operators 596
9 Semigroups 603
References 615
B Manifolds,Vector Bundles,and Lie Groups 617
1 Metric spaces and topological spaces 617
2 Manifolds 622
3 Vector bundles 624
4 Sard's theorem 626
5 Lie groups 627
6 The Campbell-Hausdorff formula 630
7 Representations of Lie groups and Lie algebras 632
8 Representations of compact Lie groups 636
9 Representations of SU(2)and related groups 641
References 647
Index 649
- 《Helmholtz方程的步进计算方法研究》李鹏著 2019
- 《数学物理方程与特殊函数》于涛,杨延冰编 2019
- 《二十面体和5次方程的解的讲义》(德)菲利克斯·克莱因著 2019
- 《方程组实数解的几何方法 影印版》Frank Sottile 2018
- 《大数据时代应用语言学研究中的结构方程建模》王天剑,王彦之 2019
- 《微分求积升阶谱有限元方法=DIFFERENTIAL QUADRATURE HIERARCHICAL FINITE ELEMENT METHOD》刘波 2019
- 《Cauchy函数方程》刘培杰数学工作室编著 2017
- 《非线性随机波动方程》梁飞 2020
- 《Navier-Stokes方程解的大时间行为》韩丕功 2019
- 《偏微分方程全局吸引子的特性》(苏)A.V.巴宾,(苏)维施内克著 2019
- 《TED说话的力量 世界优秀演讲者的口才秘诀》(坦桑)阿卡什·P.卡里亚著 2019
- 《小手画出大世界 恐龙世界》登亚编绘 2008
- 《近代世界史文献丛编 19》王强主编 2017
- 《课堂上听不到的历史传奇 世界政治军事名人 初中版》顾跃忠等编著 2015
- 《指向核心素养 北京十一学校名师教学设计 英语 七年级 上 配人教版》周志英总主编 2019
- 《365奇趣英语乐园 世界民间故事》爱思得图书国际企业 2018
- 《近代世界史文献丛编 36》王强主编 2017
- 《北京生态环境保护》《北京环境保护丛书》编委会编著 2018
- 《近代世界史文献丛编 11》王强主编 2017
- 《近代世界史文献丛编 18》王强主编 2017