当前位置:首页 > 工业技术
SPARK MLLIB机器学习  算法、源码及实战详解
SPARK MLLIB机器学习  算法、源码及实战详解

SPARK MLLIB机器学习 算法、源码及实战详解PDF电子书下载

工业技术

  • 电子书积分:13 积分如何计算积分?
  • 作 者:黄美灵著
  • 出 版 社:北京:电子工业出版社
  • 出版年份:2016
  • ISBN:7121282143
  • 页数:392 页
图书介绍:本书以Spark 1.4.1版本源码为切入点,全面并且深入地解析Spark MLlib模块,着力于探索分布式机器学习的底层实现。本书循序渐进,首先解析MLlib的底层实现基础:数据操作及矩阵向量计算操作,该部分是MLlib实现的基础;其次再对各个机器学习算法的理论知识进行讲解,并且解析机器学习算法如何在MLlib中实现分布式计算;然后对MLlib源码进行详细的讲解;最后进行MLlib实例的讲解。相信通过本书的学习,读者可全面掌握Spark MLlib机器学习,能够进行MLlib实战、MLlib定制开发等。
《SPARK MLLIB机器学习 算法、源码及实战详解》目录

第一部分 SparkM Llib基础 2

第1章 Spark机器学习简介 2

1.1 机器学习介绍 2

1.2 Spark介绍 3

1.3 Spark MLlib介绍 4

第2章 Spark数据操作 6

2.1 Spark RDD操作 6

2.1.1 Spark RDD创建操作 6

2.1.2 Spark RDD转换操作 7

2.1.3 Spark RDD行动操作 14

2.2 MLlib Statistics统计操作 15

2.2.1 列统计汇总 15

2.2.2 相关系数 16

2.2.3 假设检验 18

2.3 MLlib数据格式 18

2.3.1 数据处理 18

2.3.2 生成样本 22

第3章 Spark MLlib矩阵向量 26

3.1 Breeze介绍 26

3.1.1 Breeze创建函数 27

3.1.2 Breeze元素访问及操作函数 29

3.1.3 Breeze数值计算函数 34

3.1.4 Breeze求和函数 35

3.1.5 Breeze布尔函数 36

3.1.6 Breeze线性代数函数 37

3.1.7 Breeze取整函数 39

3.1.8 Breeze常量函数 40

3.1.9 Breeze复数函数 40

3.1.10 Breeze三角函数 40

3.1.11 Breeze对数和指数函数 40

3.2 BLAS介绍 41

3.2.1 BLAS向量-向量运算 42

3.2.2 BLAS矩阵-向量运算 42

3.2.3 BLAS矩阵-矩阵运算 43

3.3 MLlib向量 43

3.3.1 MLlib向量介绍 43

3.3.2 MLlib Vector接口 44

3.3.3 MLlib DenseVector类 46

3.3.4 MLlib SparseVector类 49

3.3.5 MLlib Vectors伴生对象 50

3.4 MLlib矩阵 57

3.4.1 MLlib矩阵介绍 57

3.4.2 MLlib Matrix接口 57

3.4.3 MLlib DenseMatrix类 59

3.4.4 MLlib SparseMatrix类 64

3.4.5 MLlib Matrix伴生对象 71

3.5 MLlib BLAS 77

3.6 MLlib分布式矩阵 93

3.6.1 MLlib分布式矩阵介绍 93

3.6.2 行矩阵(RowMatrix) 94

3.6.3 行索引矩阵(IndexedRowMatrix) 96

3.6.4 坐标矩阵(CoordinateMatrix) 97

3.6.5 分块矩阵(BlockMatrix) 98

第二部分 Spark MLlib回归算法 102

第4章 Spark MLlib线性回归算法 102

4.1 线性回归算法 102

4.1.1 数学模型 102

4.1.2 最小二乘法 105

4.1.3 梯度下降算法 105

4.2 源码分析 106

4.2.1 建立线性回归 108

4.2.2 模型训练run方法 111

4.2.3 权重优化计算 114

4.2.4 线性回归模型 121

4.3 实例 123

4.3.1 训练数据 123

4.3.2 实例代码 123

第5章 Spark MLlib逻辑回归算法 126

5.1 逻辑回归算法 126

5.1.1 数学模型 126

5.1.2 梯度下降算法 128

5.1.3 正则化 129

5.2 源码分析 132

5.2.1 建立逻辑回归 134

5.2.2 模型训练run方法 137

5.2.3 权重优化计算 137

5.2.4 逻辑回归模型 144

5.3 实例 148

5.3.1 训练数据 148

5.3.2 实例代码 148

第6章 Spark MLlib保序回归算法 151

6.1 保序回归算法 151

6.1.1 数学模型 151

6.1.2 L2保序回归算法 153

6.2 源码分析 153

6.2.1 建立保序回归 154

6.2.2 模型训练run方法 156

6.2.3 并行PAV计算 156

6.2.4 PAV计算 157

6.2.5 保序回归模型 159

6.3 实例 164

6.3.1 训练数据 164

6.3.2 实例代码 164

第三部分 Spark MLlib分类算法 170

第7章 Spark MLlib贝叶斯分类算法 170

7.1 贝叶斯分类算法 170

7.1.1 贝叶斯定理 170

7.1.2 朴素贝叶斯分类 171

7.2 源码分析 173

7.2.1 建立贝叶斯分类 173

7.2.2 模型训练run方法 176

7.2.3 贝叶斯分类模型 179

7.3 实例 181

7.3.1 训练数据 181

7.3.2 实例代码 182

第8章 Spark MLlib SVM支持向量机算法 184

8.1 SVM支持向量机算法 184

8.1.1 数学模型 184

8.1.2 拉格朗日 186

8.2 源码分析 189

8.2.1 建立线性SVM分类 191

8.2.2 模型训练run方法 194

8.2.3 权重优化计算 194

8.2.4 线性SVM分类模型 196

8.3 实例 199

8.3.1 训练数据 199

8.3.2 实例代码 199

第9章 Spark MLlib决策树算法 202

9.1 决策树算法 202

9.1.1 决策树 202

9.1.2 特征选择 203

9.1.3 决策树生成 205

9.1.4 决策树生成实例 206

9.1.5 决策树的剪枝 208

9.2 源码分析 209

9.2.1 建立决策树 211

9.2.2 建立随机森林 216

9.2.3 建立元数据 220

9.2.4 查找特征的分裂及划分 223

9.2.5 查找最好的分裂顺序 228

9.2.6 决策树模型 231

9.3 实例 234

9.3.1 训练数据 234

9.3.2 实例代码 234

第四部分 Spark MLlib聚类算法 238

第10章 Spark MLlib KMeans聚类算法 238

10.1 KMeans聚类算法 238

10.1.1 KMeans算法 238

10.1.2 演示KMeans算法 239

10.1.3 初始化聚类中心点 239

10.2 源码分析 240

10.2.1 建立KMeans聚类 242

10.2.2 模型训练run方法 247

10.2.3 聚类中心点计算 248

10.2.4 中心点初始化 251

10.2.5 快速距离计算 254

10.2.6 KMeans聚类模型 255

10.3 实例 258

10.3.1 训练数据 258

10.3.2 实例代码 259

第11章 Spark MLlib LDA主题模型算法 261

11.1 LDA主题模型算法 261

11.1.1 LDA概述 261

11.1.2 LDA概率统计基础 262

11.1.3 LDA数学模型 264

11.2 GraphX基础 267

11.3 源码分析 270

11.3.1 建立LDA主题模型 272

11.3.2 优化计算 279

11.3.3 LDA模型 283

11.4 实例 288

11.4.1 训练数据 288

11.4.2 实例代码 288

第五部分 SparkMLlib关联规则挖掘算法 292

第12章 Spark MLlib FPGrowth关联规则算法 292

12.1 FPGrowth关联规则算法 292

12.1.1 基本概念 292

12.1.2 FPGrowth算法 293

12.1.3 演示FP树构建 294

12.1.4 演示FP树挖掘 296

12.2 源码分析 298

12.2.1 FPGrowth类 298

12.2.2 关联规则挖掘 300

12.2.3 FPTree类 303

12.2.4 FPGrowthModel类 306

12.3 实例 306

12.3.1 训练数据 306

12.3.2 实例代码 306

第六部分 Spark M Llib推荐算法 310

第13章 SparkMLlib ALS交替最小二乘算法 310

13.1 ALS交替最小二乘算法 310

13.2 源码分析 312

13.2.1 建立ALS 314

13.2.2 矩阵分解计算 322

13.2.3 ALS模型 329

13.3 实例 334

13.3.1 训练数据 334

13.3.2 实例代码 334

第14章 Spark MLlib协同过滤推荐算法 337

14.1 协同过滤推荐算法 337

14.1.1 协同过滤推荐概述 337

14.1.2 用户评分 338

14.1.3 相似度计算 338

14.1.4 推荐计算 340

14.2 协同推荐算法实现 341

14.2.1 相似度计算 344

14.2.2 协同推荐计算 348

14.3 实例 350

14.3.1 训练数据 350

14.3.2 实例代码 350

第七部分 Spark MLlib神经网络算法 354

第15章 Spark MLlib神经网络算法综述 354

15.1 人工神经网络算法 354

15.1.1 神经元 354

15.1.2 神经网络模型 355

15.1.3 信号前向传播 356

15.1.4 误差反向传播 357

15.1.5 其他参数 360

15.2 神经网络算法实现 361

15.2.1 神经网络类 363

15.2.2 训练准备 370

15.2.3 前向传播 375

15.2.4 误差反向传播 377

15.2.5 权重更新 381

15.2.6 ANN模型 382

15.3 实例 384

15.3.1 测试数据 384

15.3.2 测试函数代码 387

15.3.3 实例代码 388

相关图书
作者其它书籍
返回顶部