当前位置:首页 > 数理化
数值分析
数值分析

数值分析PDF电子书下载

数理化

  • 电子书积分:14 积分如何计算积分?
  • 作 者:朱晓临主编
  • 出 版 社:合肥:中国科学技术大学出版社
  • 出版年份:2014
  • ISBN:9787312034466
  • 页数:423 页
图书介绍:本书是为理工科大学本科生或工科研究生普遍开设的《数值分析》课程编写的教材,入选安徽省高等学校”十二五”省级规划教材。主要内容有:线性方程组的数值解法,方程求根的数值解法,数值逼近(包括插值与样条,数据拟合与函数逼近等),数值微分与积分、常微分方程数值解法以及偏微分方程数值解法等。每个方法都附有相应的程序。每章都有相当数量的例题和习题,并附有习题答案;书末还配有计算实习题,供学生上机实习选用。
上一篇:高等数学下一篇:高等数学课程参考
《数值分析》目录

第1章 绪论 1

1.1 引言 1

1.2 误差的基本理论 3

1.3 避免误差危害的若干原则 12

1.4 算法程序 17

习题 22

第2章 线性方程组的数值解法 24

2.1 引言 24

2.2 Gauss消去法 25

2.3 矩阵三角分解法 32

2.4 向量与矩阵范数 42

2.5 解线性方程组的迭代法 46

2.6 迭代法的收敛性 52

2.7 方程组的性态及误差分析 66

2.8 算法程序 70

本章小结 88

习题 89

第3章 非线性方程(组)的数值解法 93

3.1 引言 93

3.2 求实根的二分法 94

3.3 迭代法及其收敛性 96

3.4 Newton迭代法 107

3.5 弦截法 115

3.6 抛物线(Müller)法 119

3.7 非线性方程组的迭代法简介 121

3.8 算法程序 129

本章小结 133

习题 134

第4章 插值法 138

4.1 引言 138

4.2 Lagrange插值 140

4.3 Newton插值 144

4.4 Hermite插值 153

4.5 分段多项式插值 158

4.6 三次样条插值 161

4.7 B样条简介 173

4.8 算法程序 176

本章小结 190

习题 191

第5章 数据拟合与函数逼近 194

5.1 引言 194

5.2 最小二乘法 195

5.3 正交多项式 203

5.4 最佳平方逼近 208

5.5 最佳一致逼近 212

5.6 算法程序 217

本章小结 218

习题 219

第6章 数值微积分 221

6.1 引言 221

6.2 数值微分 222

6.3 数值积分的一般概念 230

6.4 Newton-Cotes求积公式 233

6.5 复化求积公式 238

6.6 Romberg算法 245

6.7 Gauss型求积公式 248

6.8 振荡函数的积分的数值求积公式 255

6.9 重积分的数值求积公式 258

6.10 算法程序 263

本章小结 272

习题 273

第7章 常微分方程初值问题的数值解法 276

7.1 引言 276

7.2 Euler方法及改进的Euler方法 278

7.3 Runge-Kutta方法 283

7.4 单步法的相容性、收敛性与稳定性 292

7.5 线性多步法 300

7.6 常微分方程组和高阶常微分方程的数值解法简介 311

7.7 算法程序 320

本章小结 326

习题 327

第8章 常微分方程边值问题的数值解法 330

8.1 引言 330

8.2 差分法 331

8.3 有限元法 337

8.4 打靶法 345

8.5 算法程序 347

本章小结 351

习题 351

第9章 矩阵特征值的数值解法 353

9.1 引言 353

9.2 幂法与反幂法 355

9.3 QR算法 363

9.4 Jacobi方法 375

9.5 算法程序 382

本章小结 392

习题 392

上机实习题 395

习题参考答案 398

符号注释表 411

参考文献 413

名词索引 414

返回顶部