湍流研究的动力系统方法 英文PDF电子书下载
- 电子书积分:12 积分如何计算积分?
- 作 者:Tomas Bohr等著
- 出 版 社:北京:清华大学出版社
- 出版年份:2000
- ISBN:7302039054
- 页数:350 页
Chapter 1 Turbulence and dynamical systems 1
1.1 What do we mean by turbulence? 1
1.2 Examples of turbulent phenomena 3
1.2.1 Fluids 3
1.2.2 Chemical turbulence 7
1.2.3 Flame fronts 9
1.3 Why a dynamical system approach? 11
1.4 Examples of dynamical systems for turbulence 11
1.4.1 Shell models 11
1.4.2 Coupled map lattices 12
1.4.3 Cellular automata 13
1.5 Characterization of chaos in high dimensionality 14
1.5.1 Lyapunov exponents in extended systems 14
1.5.2 Lyapunov spectra and dimension densities 15
1.5.3 Characterization of chaos in discrete models 18
1.5.4 The correlation length 18
1.5.5 Scaling invariance and chaos 19
Chapter 2 Phenomenology of hydrodynamic turbulence 21
2.1 Turbulence as a statistical theory 21
2.1.1 Statistical mechanics of a perfect fluid 22
2.1.2 Basic facts and ideas on fully developed turbulence 24
2.1.3 The closure problem 28
2.2 Scaling invariance in turbulence 31
2.3 Multifractal description of fully developed turbulence 34
2.3.1 Scaling of the structure functions 34
2.3.2 Multiplicative models for intermittency 36
2.3.3 Probability distribution function of the velocity gradients 40
2.3.4 Multiscaling 43
2.3.5 Number of degrees of freedom of turbulence 44
2.4 Two-dimensional turbulence 45
Chapter 3 Reduced models for hydrodynamic turbulence 48
3.1 Dynamical systems as models of the energy cascade 48
3.2 A brief overview on shell models 49
3.2.1 The model of Desnyansky and Novikov 51
3.2.2 The model of Gledzer,Ohkitani and Yamada(the GOY model) 52
3.2.3 Hierarchical shell models 56
3.2.4 Continuum limit of the shell models 57
3.3 Dynamical properties of the GOY models 58
3.3.1 Fixed points and scaling 58
3.3.2 Transition from a stable fixed point to chaos 60
3.3.3 The Lyapunov spectrum 65
3.4 Multifractality in the GOY model 68
3.4.1 Anomalous scaling of the structure functions 68
3.4.2 Dynamical intermittency 71
3.4.3 Construction of a 3D incompressible velocity field from the shell models 73
3.5 A closure theory for the GOY model 74
3.6 Shell models for the advection of passive scalars 78
3.7 Shell models for two-dimensional turbulence 83
3.8 Low-dimensional models for coherent structures 88
Chapter 4 Turbulence and coupled map lattices 91
4.1 Introduction to coupled chaotic maps 92
4.1.1 Linear stability of the coherent state 93
4.1.2 Spreading of perturbations 94
4.2 Scaling at the critical point 97
4.2.1 Scaling of the Lyapunov exponents 97
4.2.2 Scaling of the correlation length 99
4.2.3 Spreading of localized perturbations 101
4.2.4 Renormalization group results 104
4.3 Lyapunov spectra 106
4.3.1 Coupled map lattices with conservation laws 107
4.3.2 Analytic results 110
4.4 Coupled maps with laminar states 112
4.4.1 Spatio-temporal intermittency 112
4.4.2 Invariant measures and Perron-Frobenius equation of CML 114
4.4.3 Mean field approximation and phase diagram 115
4.4.4 Direct iterates and finite size scaling 118
4.4.5 Spatial correlations and hyperscaling 121
4.5 Coupled map lattices with anisotropic couplings 123
4.5.1 Convective instabilities and turbulent spots 123
4.5.2 Coherent chaos in anisotropic systems 128
4.5.3 A boundary layer instability in an anisotropic system 131
4.5.4 A coupled map lattice for a convective system 134
Chapter 5 Turbulence in the complex Ginzburg-Landau equation 138
5.1 The complex Ginzburg-Landau equation 139
5.2 The stability of the homogeneous periodic state and the phase equation 143
5.3 Plane waves and their stability 146
5.3.1 The stability of plane waves 146
5.3.2 Convective versus absolute stability 148
5.4 Large-scale simulations and the coupled map approximation 148
5.5 Spirals and wave number selection 150
5.6 The onset of turbulence 152
5.6.1 Transient turbulence and nucleation 155
5.7 Glassy states of bound vortices 158
5.8 Vortex interactions 161
5.8.1 Microscopic theory of shocks 162
5.8.2 Asymptotic properties 163
5.8.3 Weak shocks 167
5.9 Phase turbulence and the Kuramoto-Sivashinsky equation 168
5.9.1 Correlations in the Kuramoto-Sivashinsky equation 170
5.9.2 Dimension densities and correlations in phase turbulence 171
5.10 Anisotropic phase equation 172
5.10.1 The shape of a spreading spot 173
5.10.2 Turbulent spots and pulses 178
5.10.3 Anisotropic turbulent spots in two dimensions 181
Chapter 6 predictability in high-dimensional systems 183
6.1 Predictability in turbulence 185
6.1.1 Maximum Lyapunov exponent of a turbulent flow 185
6.1.2 The classical theory of predictability in turbulence 186
6.2 Predictability in systems with many characteristic times 188
6.3 Chaos and butterfly effect in the GOY model 191
6.3.1 Growth of infinitesimal perturbations and dynamical intermittency 191
6.3.2 Statistics of the predictability time and its relation with intermittency 195
6.3.3 Growth of non-infinitesimal perturbations 197
6.4 Predictability in extended systems 200
6.5 Predictability in noisy systems 202
6.6 Final remarks 209
Chapter 7 Dynamics of interfaces 211
7.1 Turbulence and interfaces 211
7.2 The Burgers equation 212
7.3 The Langevin approach to dynamical interfaces:the KPZ equation 215
7.4 Deterministic interface dynamics:the Kuramoto-Sivashinsky equation 219
7.4.1 Cross-over to KPZ behaviour 222
7.4.2 The Kuramoto-Sivashinsky equation in 2+1 dimensions 225
7.4.3 Interfaces in coupled map lattices 227
7.5 Depinning models 231
7.5.1 Quenched randomness and directed percolation networks 231
7.5.2 Self-organized-critical dynamics:the Sneppen model 232
7.5.3 Coloured activity 235
7.5.4 A scaling theory for the Sneppen model:mapping to directed percolation 237
7.5.5 A geometric description of the avalanche dynamics 240
7.5.6 Multiscaling 241
7.6 Dynamics of a membrane 243
Chapter 8 Lagrangian chaos 244
8.1 General remarks 244
8.1.1 Examples of Lagrangian chaos 247
8.1.2 Stretching of material lines and surfaces 251
8.2 Eulerian versus Lagrangian chaos 253
8.2.1 Onset of Lagrangian chaos in two-dimensional flows 255
8.2.2 Eulerian chaos and fluid particle motion 258
8.2.3 A comment on Lagrangian chaos 264
8.3 Statistics of passive fields 265
8.3.1 The growth of scalar gradients 265
8.3.2 The multifractal structure for the distribution of scalar gradients 266
8.3.3 The power spectrum of scalar fields 268
8.3.4 Some remarks on the validity of the Batchelor law 270
8.3.5 Intermittency and multifractality in magnetic dynamos 272
Chapter 9 Chaotic diffusion 277
9.1 Diffusion in incompressible flows 279
9.1.1 Standard diffusion in the presence of Lagrangian chaos 279
9.1.2 Standard diffusion in steady velocity fields 281
9.1.3 Anomalous diffusion in random velocity fields 283
9.1.4 Anomalous diffusion in smooth velocity fields 284
9.2 Anomalous diffusion in fields generated by extended systems 285
9.2.1 Anomalous diffusion in the Kuramoto-Sivashinsky equation 286
9.2.2 Multidiffusion along an intermittent membrane 290
Appendix A Hopf bifurcation 292
Appendix B Hamiltonian systems 294
Appendix C Characteristic and generalized Lyapunov exponents 301
Appendix D Convective instabilities and linear front propagation 309
Appendix E Generalized fractal dimensions and multifractals 315
Appendix F Multiaffine fields 320
Appendix G Reduction to a finite-dimensional dynamical system 325
Appendix H Directed percolation 329
References 332
Index 347
- 《中风偏瘫 脑萎缩 痴呆 最新治疗原则与方法》孙作东著 2004
- 《红色旅游的社会效应研究》吴春焕著 2019
- 《管理信息系统习题集》郭晓军 2016
- 《汉语词汇知识与习得研究》邢红兵主编 2019
- 《生物质甘油共气化制氢基础研究》赵丽霞 2019
- 《东北民歌文化研究及艺术探析》(中国)杨清波 2019
- 《联吡啶基钌光敏染料的结构与性能的理论研究》李明霞 2019
- 《异质性条件下技术创新最优市场结构研究 以中国高技术产业为例》千慧雄 2019
- 《《国语》和《战国策》词汇比较研究》陈长书著 2017
- 《中国制造业绿色供应链发展研究报告》中国电子信息产业发展研究院 2019
- 《大学计算机实验指导及习题解答》曹成志,宋长龙 2019
- 《指向核心素养 北京十一学校名师教学设计 英语 七年级 上 配人教版》周志英总主编 2019
- 《大学生心理健康与人生发展》王琳责任编辑;(中国)肖宇 2019
- 《大学英语四级考试全真试题 标准模拟 四级》汪开虎主编 2012
- 《大学英语教学的跨文化交际视角研究与创新发展》许丽云,刘枫,尚利明著 2020
- 《北京生态环境保护》《北京环境保护丛书》编委会编著 2018
- 《复旦大学新闻学院教授学术丛书 新闻实务随想录》刘海贵 2019
- 《大学英语综合教程 1》王佃春,骆敏主编 2015
- 《大学物理简明教程 下 第2版》施卫主编 2020
- 《指向核心素养 北京十一学校名师教学设计 英语 九年级 上 配人教版》周志英总主编 2019