

理论物理中的“Mathematica” 电动力学,量子力学,广义相对论和分形 影印版PDF电子书下载
- 电子书积分:24 积分如何计算积分?
- 作 者:GERD,H.A.Haus著
- 出 版 社:北京:科学出版社
- 出版年份:2011
- ISBN:9787030313379
- 页数:942 页
VolumeⅠ 1
1 Introduction 1
1.1 Basics 1
1.1.1 Structure of Mathematica 2
1.1.2 Interactive Use of Mathematica 4
1.1.3 Symbolic Calculations 6
1.1.4 Numerical Calculations 11
1.1.5 Graphics 13
1.1.6 Programming 23
2 Classical Mechanics 31
2.1 Introduction 31
2.2 Mathematical Tools 35
2.2.1 Introduction 35
2.2.2 Coordinates 36
2.2.3 Coordinate Transformations and Matrices 38
2.2.4 Scalars 54
2.2.5 Vectors 57
2.2.6 Tensors 59
2.2.7 Vector Products 64
2.2.8 Derivatives 69
2.2.9 Integrals 73
2.2.10 Exercises 74
2.3 Kinematics 76
2.3.1 Introduction 76
2.3.2 Velocity 77
2.3.3 Acceleration 81
2.3.4 Kinematic Examples 82
2.3.5 Exercises 94
2.4 Newtonian Mechanics 96
2.4.1 Introduction 96
2.4.2 Frame of Reference 98
2.4.3 Time 100
2.4.4 Mass 101
2.4.5 Newton's Laws 103
2.4.6 Forces in Nature 106
2.4.7 Conservation Laws 111
2.4.8 Application of Newton's Second Law 118
2.4.9 Exercises 188
2.4.10 Packages and Programs 188
2.5 Central Forces 201
2.5.1 Introduction 201
2.5.2 Kepler's Laws 202
2.5.3 Central Field Motion 208
2.5.4 Two-Particle Collisons and Scattering 240
2.5.5 Exercises 272
2.5.6 Packages and Programs 273
2.6 Calculus of Variations 274
2.6.1 Introduction 274
2.6.2 The Problem of Variations 276
2.6.3 Euler's Equation 281
2.6.4 Euler Operator 283
2.6.5 Algorithm Used in the Calculus of Variations 284
2.6.6 Euler Operator for q Dependent Variables 293
2.6.7 Euler Operator for q+p Dimensions 296
2.6.8 Variations with Constraints 300
2.6.9 Exercises 303
2.6.10 Packages and Programs 303
2.7 Lagrange Dynamics 305
2.7.1 Introduction 305
2.7.2 Hamilton's Principle Hisorical Remarks 306
2.7.3 Hamilton's Principle 313
2.7.4 Symmetries and Conservation Laws 341
2.7.5 Exercises 351
2.7.6 Packages and Programs 351
2.8 Hamiltonian Dynamics 354
2.8.1 Introduction 354
2.8.2 Legendre Transform 355
2.8.3 Hamilton's Equation of Motion 362
2.8.4 Hamilton's Equations and the Calculus of Variation 366
2.8.5 Liouville's Theorem 373
2.8.6 Poisson Brackets 377
2.8.7 Manifolds and Classes 384
2.8.8 Canonical Ttansformations 396
2.8.9 Generating Functions 398
2.8.10 Action Variables 403
2.8.11 Exercises 419
2.8.12 Packages and Programs 419
2.9 Chaotic Systems 422
2.9.1 Introduction 422
2.9.2 Discrete Mappings and Hamiltonians 431
2.9.3 Lyapunov Exponents 435
2.9.4 Exercises 448
2.10 Rigid Body 449
2.10.1 Introduction 449
2.10.2 The Inertia Tensor 450
2.10.3 The Angular Momentum 453
2.10.4 Principal Axes of Inertia 454
2.10.5 Steiner's Theorem 460
2.10.6 Euler's Equations of Motion 462
2.10.7 Force-Free Motion of a Symmetrical Top 467
2.10.8 Motion of a Symmetrical Top in a Force Field 471
2.10.9 Exercises 481
2.10.10 Packages and Programms 481
3 Nonlinear Dynamics 485
3.1 Introduction 485
3.2 The Korteweg-de Vries Equation 488
3.3 Solution of the Korteweg-de Vries Equation 492
3.3.1 The Inverse Scattering Transform 492
3.3.2 Soliton Solutions of the Korteweg-de Vries Equation 498
3.4 Conservation Laws of the Korteweg-de Vries Equation 505
3.4.1 Definition of Conservation Laws 506
3.4.2 Derivation of Conservation Laws 508
3.5 Numerical Solution of the Korteweg-de Vries Equation 511
3.6 Exercises 515
3.7 Packages and Programs 516
3.7.1 Solution of the KdV Equation 516
3.7.2 Conservation Laws for the KdV Equation 517
3.7.3 Numerical Solution of the KdV Equation 518
References 521
Index 529
VolumeⅡ 545
4 Electrodynamics 545
4.1 Introduction 545
4.2 Potential and Electric Field of Discrete Charge Distributions 548
4.3 Boundary Problem of Electrostatics 555
4.4 Two Ions in the Penning Trap 566
4.4.1 The Center of Mass Motion 569
4.4.2 Relative Motion of the Ions 572
4.5 Exercises 577
4.6 Packages and Programs 578
4.6.1 Point Charges 578
4.6.2 Boundary Problem 581
4.6.3 Penning Trap 582
5 Quantum Mechanics 587
5.1 Introduction 587
5.2 The Schr?dinger Equation 590
5.3 One-Dimensional Potential 595
5.4 The Harmonic Oscillator 609
5.5 Anharmonic Oscillator 619
5.6 Motion in the Central Force Field 631
5.7 Second Virial Coefficient and Its Quantum Corrections 642
5.7.1 The SVC and Its Relation to Thermodynamic Properties 644
5.7.2 Calculation of the Classical SVC Bc(T)for the(2n-n)-Potential 646
5.7.3 Quantum Mechanical Corrections Bq1(T)and Bq2(T)of the SVC 655
5.7.4 Shape Dependence of the Boyle Temperature 680
5.7.5 The High-Temperature Partition Function for Diatomic Molecules 684
5.8 Exercises 687
5.9 Packages and Programs 688
5.9.1 QuantumWell 688
5.9.2 HarmonicOscillator 693
5.9.3 AnharmonicOscillator 695
5.9.4 CentralField 698
6 General Relativity 703
6.1 Introduction 703
6.2 The Orbits in General Relativity 707
6.2.1 Quasielliptic Orbits 713
6.2.2 Asymptotic Circles 719
6.3 Light Bending in the Gravitational Field 720
6.4 Einstein's Field Equations(Vacuum Case) 725
6.4.1 Examples for Metric Tensors 727
6.4.2 The Christoffel Symbols 731
6.4.3 The Riemann Tensor 731
6.4.4 Einstein's Field Equations 733
6.4.5 The Cartesian Space 734
6.4.6 Cartesian Space in Cylindrical Coordinates 736
6.4.7 Euclidean Space in Polar Coordinates 737
6.5 The Schwarzschild Solution 739
6.5.1 The Schwarzschild Metric in Eddington-Finkelstein Form 739
6.5.2 Dingle's Metric 742
6.5.3 Schwarzschild Metric in Kruskal Coordinates 748
6.6 The Reissner-Nordstrom Solution for a Charged Mass Point 752
6.7 Exercises 759
6.8 Packages and Programs 761
6.8.1 EulerLagrange Equations 761
6.8.2 PerihelionShifi 762
6.8.3 LightBending 767
7 Fractals 773
7.1 Introduction 773
7.2 Measuring a Borderline 776
7.2.1 Box Counting 781
7.3 The Koch Curve 790
7.4 Multifractals 795
7.4.1 Muitifractals with Common Scaling Factor 798
7.5 The Renormlization Group 801
7.6 Fractional Calculus 809
7.6.1 Historical Remarks on Fractional Calculus 810
7.6.2 The Riemann-Liouville Calculus 813
7.6.3 Mellin Transforms 830
7.6.4 Fractional Differential Equations 856
7.7 Exercises 883
7.8 Packages and Programs 883
7.8.1 Tree Generation 883
7.8.2 Koch Curves 886
7.8.3 Multifactals 892
7.8.4 Renormalization 895
7.8.5 Fractional Calculus 897
Appendix 899
A.1 Program Installation 899
A.2 Glossary of Files and Functions 900
A.3 Mathematica Functions 910
References 923
Index 931
- 《流体力学》张扬军,彭杰,诸葛伟林编著 2019
- 《工程静力学》王科盛主编 2019
- 《空气动力学 7 飘浮的秘密》(加)克里斯·费里著 2019
- 《材料力学 上》杨在林,杨丽红主编 2011
- 《流体力学与传热学》潘小勇编著 2019
- 《材料力学 第2版》严圣平,马占国 2018
- 《海洋油气计算流体力学》朱红钧编 2016
- 《临近空间高超声速飞行器计算空气动力学》艾邦成著 2020
- 《写给孩子的趣味力学》(俄)雅科夫·伊西达洛维奇·别莱利曼著 2019
- 《工程力学》伍春发,张凤,高文秀主编 2019
- 《中风偏瘫 脑萎缩 痴呆 最新治疗原则与方法》孙作东著 2004
- 《水面舰艇编队作战运筹分析》谭安胜著 2009
- 《王蒙文集 新版 35 评点《红楼梦》 上》王蒙著 2020
- 《TED说话的力量 世界优秀演讲者的口才秘诀》(坦桑)阿卡什·P.卡里亚著 2019
- 《燕堂夜话》蒋忠和著 2019
- 《经久》静水边著 2019
- 《魔法销售台词》(美)埃尔默·惠勒著 2019
- 《微表情密码》(波)卡西亚·韦佐夫斯基,(波)帕特里克·韦佐夫斯基著 2019
- 《看书琐记与作文秘诀》鲁迅著 2019
- 《酒国》莫言著 2019
- 《指向核心素养 北京十一学校名师教学设计 英语 七年级 上 配人教版》周志英总主编 2019
- 《《走近科学》精选丛书 中国UFO悬案调查》郭之文 2019
- 《北京生态环境保护》《北京环境保护丛书》编委会编著 2018
- 《中医骨伤科学》赵文海,张俐,温建民著 2017
- 《美国小学分级阅读 二级D 地球科学&物质科学》本书编委会 2016
- 《指向核心素养 北京十一学校名师教学设计 英语 九年级 上 配人教版》周志英总主编 2019
- 《强磁场下的基础科学问题》中国科学院编 2020
- 《小牛顿科学故事馆 进化论的故事》小牛顿科学教育公司编辑团队 2018
- 《小牛顿科学故事馆 医学的故事》小牛顿科学教育公司编辑团队 2018
- 《高等院校旅游专业系列教材 旅游企业岗位培训系列教材 新编北京导游英语》杨昆,鄢莉,谭明华 2019