自激振动 理论、范例及研究方法 英文PDF电子书下载
- 电子书积分:13 积分如何计算积分?
- 作 者:丁文镜著
- 出 版 社:北京:清华大学出版社
- 出版年份:2011
- ISBN:9787302242963
- 页数:399 页
Chapter 1 Introduction 1
1.1 Main Features of Self-Excited Vibration 1
1.1.1 Natural Vibration in Conservative Systems 1
1.1.2 Forced Vibration under Periodic Excitations 3
1.1.3 Parametric Vibration 6
1.1.4 Self-Excited Vibration 9
1.2 Conversion between Forced Vibration and Self-Excited Vibration 12
1.3 Excitation Mechanisms of Self-Excited Vibration 13
1.3.1 Energy Mechanism 13
1.3.2 Feedback Mechanism 15
1.4 A Classification of Self-Excited Vibration Systems 16
1.4.1 Discrete System 17
1.4.2 Continuous System 17
1.4.3 Hybrid System 18
1.5 Outline ofthe Book 18
References 20
Chapter 2 Geometrical Method 21
2.1 Structure of Phase Plane 21
2.2 Phase Diagrams of Conservative Systems 23
2.2.1 Phase Diagram of a Simple Pendulum 23
2.2.2 Phase Diagram of a Conservative System 24
2.3 Phase Diagrams of Nonconservative Systems 25
2.3.1 Phase Diagram of Damped Linear Vibrator 25
2.3.2 Phase Diagram of Damped Nonlinear Vibrator 28
2.4 Classification of Equilibrium Points of Dynamic Systems 32
2.4.1 Linear Approximation at Equilibrium Point 32
2.4.2 Classification of Equilibrium Points 33
2.4.3 Transition between Types of Equilibrium Points 35
2.5 The Existence of Limit Cycle of an Autonomous System 36
2.5.1 The Index of a Closed Curve with Respect to Vector Field 36
2.5.2 Theorems about the Index of Equilibrium Point 39
2.5.3 The Index of Equilibrium Point and Limit Cycle 39
2.5.4 The Existence of a Limit Cycle 40
2.6 Soft Excitation and Hard Excitation of Self-Excited Vibration 42
2.6.1 Definition of Stability of Limit Cycle 43
2.6.2 Companion Relations 43
2.6.3 Soft Excitation and Hard Excitation 45
2.7 Self-Excited Vibration in Strongly Nonlinear Systems 46
2.7.1 Waveforms of Self-Excited Vibration 46
2.7.2 Relaxation Vibration 47
2.7.3 Self-Excited Vibration in a Non-Smooth Dynamic System 49
2.8 Mapping Method and its Application 52
2.8.1 Poincare Map 52
2.8.2 Piecewise Linear System 55
2.8.3 Application of the Mapping Method 56
References 58
Chapter 3 Stability Methods 59
3.1 Stability of Equilibrium Position 59
3.1.1 Equilibrium Position of Autonomous System 59
3.1.2 First Approximation Equation of a Nonlinear Autonomous System 60
3.1.3 Definition of Stability of Equilibrium Position 60
3.1.4 First Approximation Theorem of Stability of Equilibrium Position 61
3.2 An Algebraic Criterion for Stability of Equilibrium Position 62
3.2.1 Eigenvalues of Linear Ordinary Differential Equations 62
3.2.2 Distribution of Eigenvalues of a Asymptotic Stable System 63
3.2.3 Hurwitz criterion 63
3.3 A Geometric Criterion for Stabilitv of Equilibrium Position 65
3.3.1 Hodograph of Complex VectorD(iω) 65
3.3.2 Argument of Hodograph of Complex Vector D(iω) 66
3.3.3 Geometric Criterion for Stability of Equilibrium Position 67
3.3.4 Coefficient Condition corresponding to the Second Type of Critical Stability 68
3.4 Parameter Condition for Stability of Equilibrium Position 70
3.4.1 Stable Region in Coefficient Space 70
3.4.2 Stable Region in Parameter Space 71
3.4.3 Parameter Perturbation on the Boundaries of Stable Region 73
3.5 A Quadratic Form Criterion for Stability of Equilibrium Position 75
3.5.1 Linear Equations of Morion of Holonomic System 75
3.5.2 Quadratic Form of Eigenvectors of a Holonornic System 76
3.5.3 Quadratic Form Criterion for a Holonomic System 78
3.5.4 Influence of Circulatory Force on Stability of Equilibrium Position 78
References 79
Chapter 4 Quantitative Methods 80
4.1 Center Manifold 80
4.1.1 Concept of Flow 80
4.1.2 Hartrnan-Grobman Theorem 82
4.1.3 Center Manifold Theorem 83
4.1.4 Equation of Center Manifold 85
4.2 Hopf Bifurcation Method 87
4.2.1 Poincare-Birkhoff Normal Form 87
4.2.2 Poincare-Andronov-Hopf Bifurcation Theorem 91
4.2.3 Hopf Bifurcation Method 94
4.3 Lindstedt-Poincare Method 96
4.3.1 Formulation of Equations 96
4.3.2 Periodic Solution of the van der Pol Equation 98
4.4 An Averaging Method of Second-Order Autonomous System 100
4.4.1 Formulation of Equations 100
4.4.2 Periodic Solution of Rayleigh Equation 102
4.5 Method of Multiple Scales for a Second-Order Autonomous System 103
4.5.1 Formulation of Equation System 103
4.5.2 Formulation of Periodic Solution 104
4.5.3 Periodic Solution of van der Pol Equation 105
References 107
Chapter 5 Analysis Method for Closed-Loop System 108
5.1 Mathematical Model in Frequency Domain 108
5.1.1 Concepts Related to the Closed-Loop System 108
5.1.2 Typical Components 110
5.1.3 Laplace Transformation 111
5.1.4 Transfer Function 112
5.1.5 Block Diagram of Closed-Loop Systems 113
5.2 Nyquist Criterion 114
5.2.1 Frequency Response 114
5.2.2 Nyquist Criterion 116
5.2.3 Application of Nyquist Criterion 118
5.3 A Frequency Criterion for Absolute Stability of a Nonlinear Closed-Loop System 121
5.3.1 Absolute Stability 121
5.3.2 Block Diagram Model of Nonlinear Closed-Loop Systems 122
5.3.3 Popov Theorems 123
5.3.4 Application of Popov Theorem 125
5.4 Describing Function Method 127
5.4.1 Basic Principle 127
5.4.2 Describing Function 128
5.4.3 Amplitude and Frequency of Self-Excited Vibration 130
5.4.4 Stability of Self-Excited Vibration 131
5.4.5 Application ofDescribing Function Method 131
5.5 Quadratic Optimal Control 133
5.5.1 Quadratic Optimal State Control 134
5.5.2 Optimal Output Control 136
5.5.3 Application of Quadratic Optimal Control 137
References 139
Chapter 6 Stick-Slip Vibration 140
6.1 Mathematical Description of Friction Force 140
6.1.1 Physical Background of Friction Force 141
6.1.2 Three Kinds of Mathematical Description of Friction Force 141
6.2 Stick-Slip Motion 145
6.2.1 A Simple Model for Studying Stick-S1ip Motion 145
6.2.2 Non-Smooth Limit Cycle Caused by Friction 147
6.2.3 First Type of Excitation Efiects for Stick-Slip Motion 148
6.3 Hunting in Flexible Transmission Devices 148
6.3.1 A Mechanical Model and its Equation of Motion 149
6.3.2 Phase Path Equations in Various Stages of Hunting Motion 151
6.3.3 Topological Structure of the Phase Diagram 153
6.3.4 Critical Parameter Equation for the Occurrence of Hunting 156
6.4 Asymmetric Dynamic Coupling Causedby Friction Force 159
6.4.1 Mechanical Model and Equations of Motion 159
6.4.2 Stability of Constant Velocity Motion of Dynamic System 161
6.4.3 Second Type of Excitation Effect for Stick-Slip Motion 164
References 166
Chapter 7 Dynamic Shimmy of Front Wheel 167
7.1 Physical Background of Tire Force 167
7.1.1 Tire Force 168
7.1.2 Cornering Force 169
7.1.3 Analytical Description of Cornering Force 170
7.1.4 Linear Model for Cornering Force 172
7.2 Point Contact Theory 174
7.2.1 Classification of Point Contact Theory 174
7.2.2 Nonholonomic Constraint 176
7.2.3 Potential Energy of a Rolling Tire 177
7.3 Dynamic Shimmy of Front Wheel 179
7.3.1 Isolated Front Wheel Model 179
7.3.2 Stability of Front Wheel under Steady Rolling 181
7.3.3 Stable Regions in Parameter Plane 182
7.3.4 Influence of System Parameters on Dynamic Shimmy of Front Wheel 183
7.4 Dynamic Shimmy of Front Wheel Coupled with Vehicle 184
7.4.1 A Simplified Model of a Front Wheel System 184
7.4.2 Mathematical Model of the Front Wheel System 185
7.4.3 Stability of Steady Rolling of the Front Wheel System 187
7.4.4 Prevention of Dynamic Shimmy in Design Stage 189
References 190
Chapter 8 Rotor Whirl 191
8.1 Mechanical Model of Rotor in Planar Whirl 191
8.1.1 Classification of rotor whirls 192
8.1.2 Mechanical Model of Whirling Rotor 193
8.2 Fluid-Film Force 195
8.2.1 Operating Mechanism of Hydrodynamic Bearings 195
8.2.2 Reynolds' Equation 196
8.2.3 Pressure Distribution on Journal Surface 199
8.2.4 Linearized Fluid Film Force 202
8.2.5 Concentrated Parameter Model of Fluid Film Force 204
8.2.6 Linear Expressions of Seal Force 207
8.3 Oil Whirl and Oil Whip 208
8.3.1 Hopf Bifurcation leading to Oil Whirl of Rotor 208
8.3.2 Threshold Speed and Whirl Frequency 212
8.3.3 Influence of Shaft Elasticity on the Oil Whirl of Rotor 215
8.3.4 Influence of Extemal Damping on Oil Whirl 218
8.3.5 Oil Whip 222
8.4 Internal Damping in Deformed Rotation Shaft 226
8.4.1 Physical Background of Internal Force of Rotation Shaft 226
8.4.2 Analytical Expression of Internal Force of Rotation Shaft 227
8.4.3 Three Components of Internal Force of Rotation Shaft 231
8.5 Rotor Whirl Excited by Internal Damping 232
8.5.1 A Simple Model of Internal Damping Force of Deformed Rotating Shaft 232
8.5.2 Synchronous Whirl of Rotor with Unbalance 233
8.5.3 Supersynchronous Whirl 236
8.6 Cause and Prevention of Rotor Whirl 237
8.6.1 Structure of Equation of Motion 238
8.6.2 Common Causes of Two Kinds of Rotor Whirls 239
8.6.3 Preventing the Rotor from Whirling 239
References 240
Chapter 9 Self-Excited Vibrations from Interaction of Structures and Fluid 243
9.1 Vortex Resonance in Flexible Structures 243
9.1.1 Vortex Shedding 244
9.1.2 Predominate Frequency 246
9.1.3 Wake Oscillator Model 249
9.1.4 Amplitude Prediction 253
9.1.5 Reduction of Vortex Resonance 254
9.2 Flutter in Cantilevered Pipe Conveying Fluid 255
9.2.1 Linear Mathematical Model 255
9.2.2 Critical Parameter Condition 258
9.2.3 Hopf Bifurcation and Critical Flow Velocity 261
9.2.4 Excitation Mechanism and Prevention of Flutter 265
9.3 Classical Flutter in Two-Dimensional Airfoil 268
9.3.1 A Continuous Model of Long Wing 268
9.3.2 Critical Flow Velocity of Classical Flutter 270
9.3.3 Excitation Mechanism of Classical Flutter 273
9.3.4 Influence of Parameters of the Wing on Critical Speed of Classical Flutter 274
9.4 Stall Flutter in Flexible Structure 277
9.4.1 Aerodynamic Forces Exciting Stall Flutter 278
9.4.2 A Mathematical Model of Galloping in the Flexible Structure 281
9.4.3 Critical Speed and Hysteresis Phenomenon of Galloping 282
9.4.4 Some Features of Stall Flutter and its Prevention Schemes 286
9.5 Fluid-Elastic Instability in Array of Circular Cylinders 288
9.5.1 Fluid-Elastic Instability 289
9.5.2 Fluid Forces Depending on Motion of Circular Cylinders 290
9.5.3 Analysis of Flow-Induced Vibration 292
9.5.4 Approximate Expressions of Critical Flow Velocity 294
9.5.5 Prediction and Prevention of Fluid-Elastic Instability 298
References 299
Chapter 10 Self-Excited Oscillations in Feedback Control System 302
10.1 Heating Control System 303
10.1.1 Operating Principle of the Heating Control System 303
10.1.2 Mathematical Model of the Heating Control System 303
10.1.3 Time History of Temperature Variation 305
10.1.4 Stable Limit Cycle in Phase Plane 306
10.1.5 Amplitude and Frequency of Room Temperature Derivation 307
10.1.6 An Excitation Mechanism of Self-Excited Oscillation 308
10.2 Electrical Position Control System with Hysteresis 308
10.2.1 Principle Diagram 308
10.2.2 Equations of Position Control System with Hysteresis Nonlinearity 310
10.2.3 Phase Diagram and Point Mapping 311
10.2.4 Existence of Limit Cycle 313
10.2.5 Critical Parameter Condition 314
10.3 Electrical Position Control System with Hysteresis and Dead-Zone 315
10.3.1 Equation of Motion 315
10.3.2 Phase Diagram and Point Mapping 316
10.3.3 Existence and Stability of Limit Cycle 318
10.3.4 Critical Parameter Condition 321
10.4 Hydraulic Position Control System 322
10.4.1 Schematic Diagram of a Hydraulic Actuator 322
10.4.2 Equations of Motion of Hydraulic Position Control System 323
10.4.3 Linearized Mathematical Model 325
10.4.4 Equilibrium Stability of Hydraulic Position Control System 327
10.4.5 Amplitude and Frequency of Self-Excited Vibration 328
10.4.6 Influence of Dead-Zone on Motion of Hydraulic Position Control System 330
10.4.7 Influence of Hysteresis and Dead-Zone on Motion of Hydraulic Position Control System 334
10.5 A Nonlinear Control System under Velocity Feedback with Time Delay 338
References 344
Chapter 11 Modeling and Control 345
11.1 Excitation Mechanism of Self-Excited Oscillation 346
11.1.1 An Explanation about Energy Mechanism 346
11.1.2 An Explanation about Feedback Mechanism 347
11.1.3 Joining of Energy and Feedback Mechanisms 349
11.2 Determine the Extent of a Mechanical Model 350
11.2.1 Minimal Model and Principle Block Diagram 351
11.2.2 First Type of Extended Model 352
11.2.3 Second Type of Extended Model 355
11.3 Mathematical Description of Motive Force 358
11.3.1 Integrate the Differential Equations of Motion of Continuum 358
11.3.2 Use of the Nonholonomic Constraint Equations 359
11.3.3 Establishing Equivalent Model of the Motive Force 360
11.3.4 Construct the Equivalent Oscillator of Motive Force 361
11.3.5 Identification of Grey Box Model 362
11.3.6 Constructing an Empiric Formula of the Motive Force 363
11.4 Establish Equations of Morion of Mechanical Systems 365
11.4.1 Application of Lagrange's Equation of Motion 365
11.4.2 Application of Hamilton's Principle 368
11.4.3 Hamilton's Principle for Open Systems 372
11.5 Discretization of Mathematical Model of a Distributed Parameter System 374
11.5.1 Lumped Parameter Method 374
11.5.2 Assumed-Modes Method 376
11.5.3 Finite Element Method 379
11.6 Active Control for Suppressing Self-Excited Vibration 380
11.6.1 Active Control of Flexible Rotor 381
11.6.2 Active Control of an Airfoil Section with Flutter 384
References 387
Subject Index 390
- 《中风偏瘫 脑萎缩 痴呆 最新治疗原则与方法》孙作东著 2004
- 《SQL与关系数据库理论》(美)戴特(C.J.Date) 2019
- 《红色旅游的社会效应研究》吴春焕著 2019
- 《汉语词汇知识与习得研究》邢红兵主编 2019
- 《生物质甘油共气化制氢基础研究》赵丽霞 2019
- 《东北民歌文化研究及艺术探析》(中国)杨清波 2019
- 《联吡啶基钌光敏染料的结构与性能的理论研究》李明霞 2019
- 《异质性条件下技术创新最优市场结构研究 以中国高技术产业为例》千慧雄 2019
- 《情报学 服务国家安全与发展的现代情报理论》赵冰峰著 2018
- 《英汉翻译理论的多维阐释及应用剖析》常瑞娟著 2019
- 《大学计算机实验指导及习题解答》曹成志,宋长龙 2019
- 《指向核心素养 北京十一学校名师教学设计 英语 七年级 上 配人教版》周志英总主编 2019
- 《大学生心理健康与人生发展》王琳责任编辑;(中国)肖宇 2019
- 《大学英语四级考试全真试题 标准模拟 四级》汪开虎主编 2012
- 《大学英语教学的跨文化交际视角研究与创新发展》许丽云,刘枫,尚利明著 2020
- 《北京生态环境保护》《北京环境保护丛书》编委会编著 2018
- 《复旦大学新闻学院教授学术丛书 新闻实务随想录》刘海贵 2019
- 《大学英语综合教程 1》王佃春,骆敏主编 2015
- 《大学物理简明教程 下 第2版》施卫主编 2020
- 《指向核心素养 北京十一学校名师教学设计 英语 九年级 上 配人教版》周志英总主编 2019