当前位置:首页 > 数理化
原子和量子物理学  英文  第7版
原子和量子物理学  英文  第7版

原子和量子物理学 英文 第7版PDF电子书下载

数理化

  • 电子书积分:16 积分如何计算积分?
  • 作 者:(德)哈肯(Hakenh)著
  • 出 版 社:北京:世界图书北京出版公司
  • 出版年份:2015
  • ISBN:9787510084522
  • 页数:517 页
图书介绍:本书是一部经典教科书,在全面阐述原子和量子物理的实验方法和基本理论的同时,也向读者介绍了该领域的最新动态, 如Bell不等式、薛定鄂猫和脱散实验,以及量子计算机、量子信息和原子激光等。本书不但有173例习题,而且还有这些习题的解,这也是本书的另一个突出特点。
《原子和量子物理学 英文 第7版》目录

1.Introduction 1

1.1 Classical Physics and Quantum Mechanics 1

1.2 Short Historical Review 1

2.The Mass and Size of the Atom 5

2.1 What is an Atom? 5

2.2 Determination of the Mass 5

2.3 Methods for Determining Avogadro's Number 7

2.3.1 Electrolysis 7

2.3.2 The Gas Constant and Boltzmann's Constant 7

2.3.3 X-Ray Diffraction in Crystals 8

2.3.4 Determination Using Radioactive Decay 9

2.4 Determination of the Size of the Atom 10

2.4.1 Application of the Kinetic Theory of Gases 10

2.4.2 The Interaction Cross Section 11

2.4.3 Experimental Determination of Interaction Cross Sections 14

2.4.4 Determining the Atomic Size from the Covolume 15

2.4.5 Atomic Sizes from X-Ray Diffraction Measurements on Crystals 15

2.4.6 CanIndividual Atoms Be Seen? 20

Problems 25

3.Isotopes 27

3.1 The Periodic System of the Elements 27

3.2 Mass Spectroscopy 29

3.2.1 Parabola Method 29

3.2.2 Improved Mass Spectrometers 32

3.2.3 Results of Mass Spectrometry 33

3.2.4 Modern Applications of the Mass Spectrometer 34

3.2.5 Isotope Separation 35

Problems 36

4.The Nucleus of the Atom 37

4.1 Passage of Electrons Through Matter 37

4.2 Passage of Alpha Particles Through Matter(Rutherford Scattering) 39

4.2.1 Some Properties of Alpha Particles 39

4.2.2 Scattering of Alpha Particles by a Foil 39

4.2.3 Derivation of the Rutherford Scattering Formula 41

4.2.4 Experimental Results 46

4.2.5 What is Meant by Nuclear Radius? 47

Problems 48

5.The Photon 49

5.1 Wave Character of Light 49

5.2 Thermal Radiation 51

5.2.1 Spectral Distribution of Black Body Radiation 51

5.2.2 Planck's Radiation Formula 53

5.2.3 Einstein's Derivation of Planck's Formula 54

5.3 The Photoelectric Effect 58

5.4 The Compton Effect 60

5.4.1 Experiments 60

5.4.2 Derivation of the Compton Shift 62

Problems 64

6.The Electron 69

6.1 Production of Free Electrons 69

6.2 Size of the Electron 69

6.3 The Charge of the Electron 70

6.4 The Specific Charge e/m of the Electron 71

6.5 Wave Character of Electrons and Other Particles 74

6.6 Interferometry with Atoms 78

Problems 79

7.Some Basic Properties of Matter Waves 81

7.1 Wave Packets 81

7.2 Probabilistic Interpretation 85

7.3 The Heisenberg Uncertainty Relation 87

7.4 The Energy-Time Uncertainty Relation 89

7.5 Some Consequences of the Uncertainty Relations for Bound States 90

Problems 93

8.Bohr's Model of the Hydrogen Atom 95

8.1 Basic Principles of Spectroscopy 95

8.2 The Optical Spectrum of the Hydrogen Atom 97

8.3 Bohr's Postulates 100

8.4 Some Quantitative Conclusions 104

8.5 Motion of the Nucleus 105

8.6 Spectra of Hydrogen-like Atoms 107

8.7 Muonic Atoms 109

8.8 Excitation of Quantum Jumps by Collisions 112

8.9 Sommerfeld's Extension of the Bohr Model and the Experimental Justification of a Second Quantum Number 114

8.10 Lifting of Orbital Degeneracy by the Relativistic Mass Change 116

8.11 Limits of the Bohr-Sommerfeld Theory.The Correspondence Principle 117

8.12 Rydberg Atoms 117

8.13 Exotic Atoms:Positronium,Muonium,and Antihydrogen 120

Problems 122

9.The Mathematical Framework of Quantum Theory 125

9.1 The Particle in a Box 125

9.2 The Schr?dinger Equation 129

9.3 The Conceptual Basis of Quantum Theory 131

9.3.1 Observations,Values of Measurements and Operators 131

9.3.2 Momentum Measurement and Momentum Probability 132

9.3.3 Average Values and Expectation Values 133

9.3.4 Operators and Expectation Values 136

9.3.5 Equations for Determining the Wavefunction 137

9.3.6 Simultaneous Observability and Commutation Relations 139

9.4 The Quantum Mechanical Oscillator 142

Problems 148

10.Quantum Mechanics of the Hydrogen Atom 153

10.1 Motion in a Central Field 153

10.2 Angular Momentum Eigenfunctions 155

10.3 The Radial Wavefunctions in a Central Field 161

10.4 The Radial Wavefunctions of Hydrogen 163

Problems 169

11.Lifting of the Orbital Degeneracy in the Spectra of Alkali Atoms 171

11.1 Shell Structure 171

11.2 Screening 173

11.3 The Term Diagram 174

11.4 Inner Shells 179

Problems 179

12.Orbital and Spin Magnetism.Fine Structure 181

12.1 Introduction and Overview 181

12.2 Magnetic Moment of the Orbital Motion 182

12.3 Precession and Orientation in a Magnetic Field 184

12.4 Spin and Magnetic Moment of the Electron 186

12.5 Determination of the Gyromagnetic Ratio by the Einstein-de Haas Method 188

12.6 Detection of Directional Quantisation by Stern and Gerlach 189

12.7 Fine Structure and Spin-Orbit Coupling:Overview 191

12.8 Calculation of Spin-Orbit Splitting in the Bohr Model 192

12.9 Level Scheme of the Alkali Atoms 196

12.10 Fine Structure in the Hydrogen Atom 197

12.11 The Lamb Shift 198

Problems 202

13.Atoms in a Magnetic Field:Experiments and Their Semiclassical Description 205

13.1 Directional Quantisation in a Magnetic Field 205

13.2 Electron Spin Resonance 205

13.3 The Zeeman Effect 208

13.3.1 Experiments 208

13.3.2 Explanation of the Zeeman Effect from the Standpoint of Classical Electron Theory 210

13.3.3 Description of the Ordinary Zeeman Effect by the Vector Model 212

13.3.4 The Anomalous Zeeman Effect 214

13.3.5 Magnetic Moments with Spin-Orbit Coupling 215

13.4 The Paschen-Back Effect 217

13.5 Double Resonance and Optical Pumping 218

Problems 220

14.Atoms in a Magnetic Field:Quantum Mechanical Treatment 223

14.1 Quantum Theory of the Ordinary Zeeman Effect 223

14.2 Quantum Theoretical Treatment of the Electron and Proton Spins 225

14.2.1 Spin as Angular Momentum 225

14.2.2 Spin Operators,Spin Matrices and Spin Wavefunctions 226

14.2.3 The Schr?dinger Equation of a Spin in a Magnetic Field 228

14.2.4 Description of Spin Precession by Expectation Values 230

14.3 Quantum Mechanical Treatment of the Anomalous Zeeman Effect with Spin-OrbitCoupling 232

14.4 Quantum Theory of a Spin in Mutually Perpendicular Magnetic Fields,One Constant and One Time Dependent 236

14.5 The Bloch Equations 241

14.6 The Relativistic Theory of the Electron.The Dirac Equation 243

14.7 The Hydrogen Atom in Strong Magnetic Fields 249

14.7.1 Rydberg Atoms in Strong Fields 250

14.7.2 What is Chaos?A Reminder of Classical Mechanics 251

14.7.3 Quantum Chaos 254

14.7.4 The Hydrogen Atom in Strong Magnetic Fields and in Low Quantum States 256

Problems 259

15.Atoms in an Electric Field 261

15.1 Observations of the Stark Effect 261

15.2 Quantum Theory of the Linear and Quadratic Stark Effects 263

15.2.1 The Hamiltonian 263

15.2.2 The Quadratic Stark Effect.Perturbation Theory Without Degeneracy 264

15.2.3 The Linear Stark Effect.Perturbation Theory in the Presence of Degeneracy 267

15.3 The Interaction of a Two-Level Atom with a Coherent Radiation Field 270

15.4 Spin and Photon Echoes 273

15.5 A Glance at Quantum Electrodynamics 276

15.5.1 Field Quantization 276

15.5.2 Mass Renormalization and Lamb Shift 281

15.6 Atoms in Strong Electric Fields 288

Problems 292

16.General Laws of Optical Transitions 295

16.1 Symmetries and Selection Rules 295

16.1.1 Optical Matrix Elements 295

16.1.2 Examples of the Symmetry Behaviour of Wavefunctions 295

16.1.3 Selection Rules 300

16.1.4 Selection Rules and Multiple Radiation 303

16.2 Linewidths and Lineshapes 306

17.Many-Electron Atoms 311

17.1 The Spectrum of the Helium Atom 311

17.2 Electron Repulsion and the Pauli Principle 313

17.3 Angular Momentum Coupling 314

17.3.1 Coupling Mechanism 314

17.3.2 LS Coupling(Russell-Saunders Coupling) 314

17.3.3 jj Coupling 318

17.4 Magnetic Moments of Many-Electron Atoms 320

17.5 Multiple Excitations 321

Problems 321

18.X-Ray Spectra,Internal Shells 323

18.1 Introductory Remarks 323

18.2 X-Radiation from Outer Shells 323

18.3 X-Ray Bremsstrahlung Spectra 324

18.4 Emission Line Spectra:Characteristic Radiation 326

18.5 Fine Structure of the X-Ray Spectra 328

18.6 Absorption Spectra 330

18.7 The Auger Effect 332

18.8 Photoelectron Spectroscopy(XPS),ESCA 334

Problems 336

19.Structure of the Periodic System.Ground States of the Elements 337

19.1 Periodic System and Shell Structure 337

19.2 From the Electron Configuration to the Atomic Term Scheme.Atomic Ground States 344

19.3 Excited States of Atoms and Possible Electronic Configurations.Complete Term Schemes 347

19.4 The Many-Electron Problem.Hartree-Fock Method 349

19.4.1 The Two-Electron Problem 349

19.4.2 Many Electrons Without Mutual Interactions 354

19.4.3 Coulomb Interaction of Electrons.Hartree and Hartree-Fock Methods 355

Problems 358

20.Nuclear Spin,Hyperfine Structure 361

20.1 Influence of the Atomic Nucleus on Atomic Spectra 361

20.2 Spins and Magnetic Moments of Atomic Nuclei 362

20.3 The Hyperfine Interaction 364

20.4 Hyperfine Structure in the Ground State of the Hydrogen Atom,the Sodium Atom,and the Hydrogen-like Ion 83Bi82+ 368

20.5 Hyperfine Structure in an External Magnetic Field,Electron Spin Resonance 370

20.6 Direct Measurements of Nuclear Spins and Magnetic Moments,Nuclear Magnetic Resonance 375

20.7 Applications of Nuclear Magnetic Resonance 378

20.8 The Nuclear Electric Quadrupole Moment 383

Problems 385

21.The Laser 387

21.1 Some Basic Concepts for the Laser 387

21.2 Rate Equations and Lasing Conditions 390

21.3 Amplitude and Phase of Laser Light 393

Problems 396

22.Modern Methods of Optical Spectroscopy 399

22.1 Classical Methods 399

22.2 Quantum Beats 400

22.3 Doppler-free Saturation Spectroscopy 402

22.4 Doppler-free Two-Photon Absorption 404

22.5 Level-Crossing Spectroscopy and the Hanle Effect 406

22.6 Laser Cooling of Atoms 408

22.7 Nondestructive Single-Photon Detection-An Example of Atomic Physics in a Resonant Cavity 413

Problems 415

23.Progress in Quantum Physics:A Deeper Understanding and New Applications 417

23.1 Introduction 417

23.2 The Superposition Principle,Interference,Probabilily and Probability Amplitudes 417

23.3 Schr?dinger's Cat 419

23.4 Decoherence 419

23.5 Entanglement 420

23.6 The Einstein-Podolsky-Rosen(EPR)Paradox 421

23.7 Bell's Inequalities and the Hidden-Variable Hypothesis 422

23.8 Experiments to Test Bell's Inequalities 425

23.9 Quantum Computers 426

23.9.1 Historical Remarks 426

23.9.2 Review of Digital Computers 427

23.9.3 Basic Concepts of the Quantum Computer 428

23.9.4 Decoherence and Error Correction 430

23.9.5 A Comparison Between the Quantum Computer and the Digital Computer 432

23.10 Quantum Information Theory 432

23.11 The Bose-Einstein Condensation 432

23.11.1 Review of Statistical Mechanics 432

23.11.2 The Experimental Discovery 433

23.11.3 The Quantum Theory of the Bose-Einstein Condensation 435

23.12 The Atom Laser 436

Problems 437

24.Fundamentals of the Quantum Theory of Chemical Bonding 439

24.1 Introductory Remarks 439

24.2 The Hydrogen-Molecule Ion H? 439

24.3 The Tunnel Effect 445

24.4 The Hydrogen Molecule H2 447

24.5 Covalent-Ionic Resonance 454

24.6 The Hund-Mulliken-Bloch Theory of Bonding in Hydrogen 455

24.7 Hybridisation 456

24.8 The πElectrons of Benzene,C6H6 458

Problems 460

Appendix 461

A.The Dirac Delta Function and the Normalisation of the Wavefunction of a Free Particle in Unbounded Space 461

B.Some Properties of the Hamiltonian Operator,Its Eigenfunctions and its Eigenvalues 465

C.Derivation of Heisenberg's Uncertainty Relation 466

Solutions to the Problems 469

Bibliography of Supplementary and Specialised Literature 499

Subject Index 507

返回顶部