傅立叶分析导论 英文版PDF电子书下载
- 电子书积分:12 积分如何计算积分?
- 作 者:斯坦恩(EliasM·Stein),RamiShakarchi著
- 出 版 社:世界图书出版公司北京公司
- 出版年份:2013
- ISBN:9787510040559
- 页数:311 页
Chapter 1.The Genesis of Fourier Analysis 1
1 The vibrating string 2
1.1 Derivation of the wave equation 6
1.2 Solution to the wave equation 8
1.3 Example: the plucked string 17
2 The heat equation 18
2.1 Derivation of the heat equation 18
2.2 Steady-state heat equation in the disc 20
3 Exercises 23
4 Problem 28
Chapter 2.Basic Properties of Fourier Series 29
1 Examples and formulation of the problem 30
1.1 Main definitions and some examples 34
2 Uniqueness of Fourier series 39
3 Convolutions 44
4 Good kernels 48
5 Cesàro and Abel summability: applications to Fourier series 51
5.1 Cesàro means and summation 51
5.2 Fejér's theorem 52
5.3 Abel means and summation 54
5.4 The Poisson kernel and Dirichlet's problem in the unit disc 55
6 Exercises 58
7 Problems 65
Chapter 3.Convergence of Fourier Series 69
1 Mean-square convergence of Fourier series 70
1.1 Vector spaces and inner products 70
1.2 Proof of mean-square convergence 76
2 Return to pointwise convergence 81
2.1 A local result 81
2.2 A continuous function with diverging Fourier series 83
3 Exercises 87
4 Problems 95
Chapter 4.Some Applications of Fourier Series 100
1 The isoperimetric inequality 101
2 Weyl's equidistribution theorem 105
3 A continuous but nowhere differentiable function 113
4 The heat equation on the circle 118
5 Exercises 120
6 Problems 125
Chapter 5.The Fourier Transform on ? 129
1 Elementary theory of the Fourier transform 131
1.1 Integration of functions on the real line 131
1.2 Definition of the Fourier transform 134
1.3 The Schwartz space 134
1.4 The Fourier transform on S 136
1.5 The Fourier inversion 140
1.6 The Plancherel formula 142
1.7 Extension to functions of moderate decrease 144
1.8 The Weierstrass approximation theorem 144
2 Applications to some partial differential equations 145
2.1 The time-dependent heat equation on the real line 145
2.2 The steady-state heat equation in the upper half-plane 149
3 The Poisson summation formula 153
3.1 Theta and zeta functions 155
3.2 Heat kernels 156
3.3 Poisson kernels 157
4 The Heisenberg uncertainty principle 158
5 Exercises 161
6 Problems 169
Chapter 6.The Fourier Transform on ?d 175
1 Preliminaries 176
1.1 Symmetries 176
1.2 Integration on ?d 178
2 Elementary theory of the Fourier transform 180
3 The wave equation in ?d × ? 184
3.1 Solution in terms of Fourier transforms 184
3.2 The wave equation in ?3 × ? 189
3.3 The wave equation in ?2 × ?: descent 194
4 Radial symmetry and Bessel functions 196
5 The Radon transform and some of its applications 198
5.1 The X-ray transform in ?2 199
5.2 The Radon transform in ?3 201
5.3 A note about plane waves 207
6 Exercises 207
7 Problems 212
Chapter 7.Finite Fourier Analysis 218
1 Fourier analysis on ?(N) 219
1.1 The group ?(N) 219
1.2 Fourier inversion theorem and Plancherel identity on ?(N) 221
1.3 The fast Fourier transform 224
2 Fourier analysis on finite abelian groups 226
2.1 Abelian groups 226
2.2 Characters 230
2.3 The orthogonality relations 232
2.4 Characters as a total family 233
2.5 Fourier inversion and Plancherel formula 235
3 Exercises 236
4 Problems 239
Chapter 8.Dirichlet's Theorem 241
1 A little elementary number theory 241
1.1 The fundamental theorem of arithmetic 241
1.2 The infinitude of primes 244
2 Dirichlet's theorem 252
2.1 Fourier analysis, Dirichlet characters, and reduc-tion of the theorem 254
2.2 Dirichlet L-functions 255
3 Proof of the theorem 258
3.1 Logarithms 258
3.2 L-functions 261
3.3 Non-vanishing of the L-function 265
4 Exercises 275
5 Problems 279
Appendix: Integration 281
1 Definition of the Riemann integral 281
1.1 Basic properties 282
1.2 Sets of measure zero and discontinuities of inte-grable functions 286
2 Multiple integrals 289
2.1 The Riemann integral in ?d 289
2.2 Repeated integrals 291
2.3 The change of variables formula 292
2.4 Spherical coordinates 293
3 Improper integrals. Integration over ?d 294
3.1 Integration of functions of moderate decrease 294
3.2 Repeated integrals 295
3.3 Spherical coordinates 297
Notes and References 299
Bibliography 301
Symbol Glossary 305
- 《水面舰艇编队作战运筹分析》谭安胜著 2009
- 《分析化学》陈怀侠主编 2019
- 《卓有成效的管理者 中英文双语版》(美)彼得·德鲁克许是祥译;那国毅审校 2019
- 《影响葡萄和葡萄酒中酚类特征的因素分析》朱磊 2019
- 《仪器分析技术 第2版》曹国庆 2018
- 《物联网导论》张翼英主编 2020
- 《全国普通高等中医药院校药学类专业十三五规划教材 第二轮规划教材 分析化学实验 第2版》池玉梅 2018
- 《材料导论》张会主编 2019
- 《化工传递过程导论 第2版》阎建民,刘辉 2020
- 《Power BI数据清洗与可视化交互式分析》陈剑 2020
- 《生命拍卖》(英)安杰拉·马森斯(AngelaMarsons)著,博集天卷出品 2019
- 《红与黑》(法)斯丹达尔著;郭宏安译 2019
- 《卡塞尔不欢迎逻辑》(西)恩里克·比拉-马塔斯著;施杰李,雪菲译 2019
- 《玛德琳》(美)路德维格·贝梅尔曼斯文图 2019
- 《爷爷您还好吗》魏琳琳译;(美)琳达·斯卡科 2019
- 《超图解中国哲学简史》玮丽斯责任编辑;(中国)王宇琨,董志道 2019
- 《大脑与精神简史 我们如何得知如何感受如何思考》王柄燚译;(德国)马提亚斯·埃科尔特 2019
- 《认知行为治疗的个案概念化》李飞,刘光亚,位照国译;(美国)杰奎琳·B.珀森斯 2019
- 《三大师》斯·茨威格著;张玉书译 2020
- 《玛丽·安托瓦内特传》(奥)斯·茨威格著 2019
- 《TED说话的力量 世界优秀演讲者的口才秘诀》(坦桑)阿卡什·P.卡里亚著 2019
- 《小手画出大世界 恐龙世界》登亚编绘 2008
- 《近代世界史文献丛编 19》王强主编 2017
- 《课堂上听不到的历史传奇 世界政治军事名人 初中版》顾跃忠等编著 2015
- 《指向核心素养 北京十一学校名师教学设计 英语 七年级 上 配人教版》周志英总主编 2019
- 《365奇趣英语乐园 世界民间故事》爱思得图书国际企业 2018
- 《近代世界史文献丛编 36》王强主编 2017
- 《北京生态环境保护》《北京环境保护丛书》编委会编著 2018
- 《近代世界史文献丛编 11》王强主编 2017
- 《近代世界史文献丛编 18》王强主编 2017