当前位置:首页 > 其他书籍
THE FOURIER INTEGRAL AND ITS APPLICATIONS
THE FOURIER INTEGRAL AND ITS APPLICATIONS

THE FOURIER INTEGRAL AND ITS APPLICATIONSPDF电子书下载

其他书籍

  • 电子书积分:12 积分如何计算积分?
  • 作 者:ATHANASIOS PAPOULIS
  • 出 版 社:INC.
  • 出版年份:1962
  • ISBN:
  • 页数:318 页
图书介绍:
《THE FOURIER INTEGRAL AND ITS APPLICATIONS》目录
标签:

PART ONE 1

Chapter 1.Introduction 1

1-1.Fourier Analysis 1

1-2.The Laplace Transform 2

1-3.Linear Systems 4

1-4.Singularity Functions 5

1-5.The Fourier Transform in Probability Theory 6

Chapter 2.Basic Theorems and Examples 7

2-1.The Fourier Integral 7

2-2.Special Forms of the Fourier Integral 10

2-3.Simple Theorems 14

2-4.Examples 18

2-5.The Convolution Theorem 25

2-6.On the Proof of the Fourier-integral Theorem 29

Chapter 3.Singularity Functions and Line Spectra 35

3-1.Basic Examples 36

3-2.Fourier Series 42

3-3.Poisson's Sum Formula 47

3-4.Periodic-frequency Spectra 49

3-5.Sampling Theorem 50

Chapter 4.Numerical Techniques and Uncertainty Principle 53

4-1.Evaluation of the Fourier Transform 53

4-2.Evaluation of the Inversion Integral 56

4-3.Approximate Evaluation ofthe Convolution Integral 59

4-4.Duration of a Signal and Uncertainty Principle 62

4-5.Generalization of the Uncertainty Principle 67

Problems 75

Solutions 77

PART TWO 81

Chapter 5.Linear Systems 81

5-1.Definitions 81

5-2.The System Function 86

5-3.Evaluation of the Step Response 89

Chapter 6.Low-pass Filters 94

6-1.Definitions 94

6-2.Amplitude Distortion 97

6-3.Causal Systems with Linear Phase 106

6-4.Phase Distortion 108

6-5.Summary 119

Chapter 7.Bandpass Filters 120

7-1.Symmetrical Systems 120

7-2.Modulated Input 127

7-3.Unsymmetrical Systems 131

7-4.Modulated Input 133

7-5.Group,Phase,and Signal-front Delay 134

7-6.Group,PHase,and Signal-front Velocity 136

7-7.The Principle of Stationary Phase 139

Chapter 8.Spectrum Analyzers 144

8-1.Simultaneous Spectral Analysis 145

8-2.Sequential Spectral Analysis 150

8-3.Periodic Signals 153

Problems 161

Solutions 165

PART THREE 169

Chapter 9.The Laplace Transform 169

9-1.The Unilateral Laplace Transform 169

9-2.Relationship between the Fourier Integral of a Causal Function and the Unilateral Laplace Transform 172

9-3.The Inversion Formula 175

9-4.Evaluation of f(t) 176

9-5.Initial-value Theorem 186

9-6.The Bilateral Laplace Transform 187

Chapter 10.Integral Theorems 192

10-1.Integral Theorems 192

10-2.Relationship between R(ω)and X(ω) 195

10-3.Minimum-phase-shift Functinos 204

10-4.Energy of a Signal 212

10-5.Causality Conditions 213

Problems 218

Solutions 220

PART FOUR 223

Chapter 11.Positive Functions and Limit Theorems 223

11-1.The Density Function 223

11-2.Repeated Convolution 226

11-3.The Central-limit Theorem 227

11-4.Error Correction 233

Chapter 12.Generalized Harmonic Analysis,Correlation,and Power Spectra 240

12-1.Introduction 240

12-2.Finite Energy Signals 241

12-3.Finite Power Signals 245

12-4.Functions with Arbitrary Power Spctra 254

12-5.Generalized Harmonic Analysis 259

Problems 265

Solutions 266

APPENDIXES 269

Appendix Ⅰ.The Impulse Function as Distribution 269

Ⅰ-1.Definitions 270

Ⅰ-2.Generalized Limits 277

Ⅰ-3.Physical Concepts as Distributions 281

Appendix Ⅱ.Analytic Functions 283

Ⅱ-1.Definitions 283

Ⅱ-2.Integration 290

Ⅱ-3.Calculus of Residues 296

Ⅱ-4.Saddle-point Method of Integration 302

Ⅱ-5.Positive Real Functions 307

Index 313

返回顶部