金融数学 英文版PDF电子书下载
- 电子书积分:10 积分如何计算积分?
- 作 者:(美)斯坦普夫里(Stampfli,J.) 吉德曼(Goodman,V.)著
- 出 版 社:北京:机械工业出版社
- 出版年份:2003
- ISBN:7111119126
- 页数:250 页
1.Financial Markets 1
1.1 Markets and Math 1
1.2 Stocks and Their Derivatives 2
1.2.1 Forward Stock Contracts 3
1.2.2 Call Options 7
1.2.3 Put Options 9
1.2.4 Short Selling 11
1.3 Pricing Futures Contracts 12
1.4 Bond Markets 15
1.4.1 Rates of Return 16
1.4.2 The U.S.Bond Market 17
1.4.3 Interest Rates and Forward Interest Rates 18
1.4.4 Yield Curves 19
1.5 Interest Rate Futures 20
1.5.1 Determining the Futures Price 20
1.5.2 Treasury Bill Futures 21
1.6 Foreign Exchange 22
1.6.1 Currency Hedging 22
1.6.2 Computing Currency Futures 23
2."Binomial Trees,Replicating Portfolios,and Arbitrage" 25
2.1 Three Ways to Price a Derivative 25
2.2 The Game Theory Method 26
2.2.1 Eliminating Uncertainty 27
2.2.2 Valuing the Option 27
2.2.3 Arbitrage 27
2.2.4 The Game Theory Method—A General Formula 28
2.3 Replicating Portfolios 29
2.3.1 The Context 30
2.3.2 A Portfolio Match 30
2.3.3 Expected Value Pricing Approach 31
2.3.4 How to Remember the Pricing Probability 32
2.4 The Probabilistic Approach 34
2.5 Risk 36
2.6 Repeated Binomial Trees and Arbitrage 39
2.7 Appendix:Limits of the Arbitrage Method 41
3.Tree Models for Stocks and Options 44
3.1 A Stock Model 44
3.1.1 Recombining Trees 46
3.1.2 Chaining and Expected Values 46
3.2 Pricing a Call Option with the Tree Model 49
3.3 Pricing an American Option 52
3.4 Pricing an Exotic Option—Knockout Options 55
3.5 Pricing an Exotic Option—Lookback Options 59
3.6 Adjusting the Binomial Tree Model to Real-World Data 61
3.7 Hedging and Pricing the N-Period Binomial Model 66
4.Using Spreadsheets to Compute Stock and Option Trees 71
4.1 Some Spreadsheet Basics 71
4.2 Computing European Option Trees 74
4.3 Computing American Option Trees 77
4.4 Computing a Barrier Option Tree 79
4.5 Computing N-Step Trees 80
5.Continuous Models and the Black-Scholes Formula 81
5.1 A Continuous-Time Stock Model 81
5.2 The Discrete Model 82
5.3 An Analysis of the Continuous Model 87
5.4 The Black-Scholes Formula 90
5.5 Derivation of the Black-Scholes Formula 92
5.5.1 The Related Model 92
5.5.2 The Expected Value 94
5.5.3 Two Integrals 94
5.5.4 Putting the Pieces Together 96
5.6 Put-Call Parity 97
5.7 Trees and Continuous Models 98
5.7.1 Binomial Probabilities 98
5.7.2 Approximation with Large Trees 100
5.7.3 Scaling a Tree to Match a GBM Model 102
5.8 The GBM Stock Price Model-A Cautionary Tale 103
5.9 Appendix:Construction of a Brownian Path 106
6.The Analytic Approach to Black-Scholes 109
6.1 Strategy for Obtaining the Differential Equation 110
6."2 Expanding V(S,t) 110
6."3 Expanding and Simplifying V(St,t) 111
6.4 Finding a Portfolio 112
6.5 Solving the Black-Scholes Differential Equation 114
6.5.1 Cash or Nothing Option 114
6.5.2 Stock-or-Nothing Option 115
6.5.3 European Call 116
6.6 Options on Futures 116
6.6.1 Call on a Futures Contract 117
6.6.2 A PDE for Options on Futures 118
6.7 Appendix:Portfolio Differentials 120
7.Hedging 122
7.1 Delta Hedging 122
7."1.1 Hedging,Dynamic Programming,and a Proof that Black-Scholes Really Works in an Idealized World 123
7.1.2 Why the Foregoing Argument Does Not Hold in the Real World 124
7.1.3 Earlier △ Hedges 125
7.2 Methods for Hedging a Stock or Portfolio 126
7.2.1 Hedging with Puts 126
7.2.2 Hedging with Collars 127
7.2.3 Hedging with Paired Trades 127
7.2.4 Correlation-Based Hedges 127
7.2.5 Hedging in the Real World 128
7.3 Implied Volatility 128
7.3.1 Computing ? with Maple 128
7.3.2 The Volatility Smile 129
7."4 The Parameters△,Г,and Θ 130
7.4.1 The Role of Г 131
7."4.2 A Further Role for △,Г,Θ 133
7.5 Derivation of the Delta Hedging Rule 134
7.6 Delta Hedging a Stock Purchase 135
8.Bond Models and Interest Rate Options 137
8.1 Interest Rates and Forward Rates 137
8.1.1 Size 138
8.1.2 The Yield Curve 138
8.1.3 How Is the Yield Curve Determined? 139
8.1.4 Forward Rates 139
8.2 Zero-Coupon Bonds 140
8.2.1 Forward Rates and ZCBs 140
8.2.2 Computations Based on Y(t) or P(t) 142
8.3 Swaps 144
8.3.1 Another Variation on Payments 147
8.3.2 A More Realistic Scenario 148
8.3.3 Models for Bond Prices 149
8.3.4 Arbitrage 150
8.4 Pricing and Hedging a Swap 152
8.4.1 Arithmetic Interest Rates 153
8.4.2 Geometric Interest Rates 155
8.5 Interest Rate Models 157
8.5.1 Discrete Interest Rate Models 158
8.5.2 Pricing ZCBs from the Interest Rate Model 162
8.5.3 The Bond Price Paradox 165
8.5.4 Can the Expected Value Pricing Method Be Arbitraged? 166
8.5.5 Continuous Models 171
8.5.6 A Bond Price Model 171
8.5.7 A Simple Example 174
8.5.8 The Vasicek Model 178
8.6 Bond Price Dynamics 180
8.7 A Bond Price Formula 181
8."8 Bond Prices,Spot Rates,and HJM 183
8.8.1 Example:The Hall-White Model 184
8.9 The Derivative Approach to HJM:The HJM Miracle 186
8.10 Appendix:Forward Rate Drift 188
9.Computational Methods for Bonds 190
9.1 Tree Models for Bond Prices 190
9.1.1 Fair and Unfair Games 190
9.1.2 The Ho-Lee Model 192
9.2 A Binomial Vasicek Model:A Mean Reversion Model 200
9.2.1 The Base Case 201
9.2.2 The General Induction Step 202
10.Currency Markets and Foreign Exchange Risks 207
10.1 The Mechanics of Trading 207
10.2 Currency Forwards:Interest Rate Parity 209
10.3 Foreign Currency Options 211
10.3.1 The Garman-Kohlhagen Formula 211
10.3.2 Put-Call Parity for Currency Options 213
10.4 Guaranteed Exchange Rates and Quantos 214
10.4.1 The Bond Hedge 215
10.4.2 Pricing the GER Forward on a Stock 216
10.4.3 Pricing the GER Put or Call Option 219
10.5 To Hedge or Not to Hedge—and How Much 220
11.International Political Risk Analysis 221
11.1 Introduction 221
11.2 Types of International Risks 222
11.2.1 Political Risk 222
11.2.2 Managing International Risk 223
11.2.3 Diversification 223
11.2.4 Political Risk and Export Credit Insurance 224
11.3 Credit Derivatives and the Management of Political Risk 225
11.3.1 Foreign Currency and Derivatives 225
11.3.2 Credit Default Risk and Derivatives 226
11.4 Pricing International Political Risk 228
11.4.1 The Credit Spread or Risk Premium on Bonds 229
11.5 Two Models for Determining the Risk Premium 230
11.5.1 The Black-Scholes Approach to Pricing Risky Debt 230
11.5.2 An Alternative Approach to Pricing Risky Debt 234
11.6 A Hypothetical Example of the JLT Model 238
- 《MBA大师.2020年MBAMPAMPAcc管理类联考专用辅导教材 数学考点精讲》(中国)董璞 2019
- 《2013数学奥林匹克试题集锦 走向IMO》2013年IMO中国国家集训队教练组编 2013
- 《一个数学家的辩白》(英)哈代(G.H.Hardy)著;李文林,戴宗铎,高嵘译 2019
- 《高等数学试题与详解》西安电子科技大学高等数学教学团队 2019
- 《卓有成效的管理者 中英文双语版》(美)彼得·德鲁克许是祥译;那国毅审校 2019
- 《数学物理方法与仿真 第3版》杨华军 2020
- 《AutoCAD 2018自学视频教程 标准版 中文版》CAD/CAM/CAE技术联盟 2019
- 《高等数学 上》东华大学应用数学系编 2019
- 《跟孩子一起看图学英文》张紫颖著 2019
- 《聋校义务教育实验教科书教师教学用书 数学 一年级 上》人民教育出版社,课程教材研究所,小学数学课程教材研究中心编著 2017
- 《SQL与关系数据库理论》(美)戴特(C.J.Date) 2019
- 《魔法销售台词》(美)埃尔默·惠勒著 2019
- 《看漫画学钢琴 技巧 3》高宁译;(日)川崎美雪 2019
- 《优势谈判 15周年经典版》(美)罗杰·道森 2018
- 《社会学与人类生活 社会问题解析 第11版》(美)James M. Henslin(詹姆斯·M. 汉斯林) 2019
- 《海明威书信集:1917-1961 下》(美)海明威(Ernest Hemingway)著;潘小松译 2019
- 《反常识》张娟责任编辑;(美国)邓肯·J.瓦茨 2019
- 《迁徙 默温自选诗集 上》(美)W.S.默温著;伽禾译 2020
- 《上帝的孤独者 下 托马斯·沃尔夫短篇小说集》(美)托马斯·沃尔夫著;刘积源译 2017
- 《巴黎永远没个完》(美)海明威著 2017
- 《指向核心素养 北京十一学校名师教学设计 英语 七年级 上 配人教版》周志英总主编 2019
- 《北京生态环境保护》《北京环境保护丛书》编委会编著 2018
- 《高等教育双机械基础课程系列教材 高等学校教材 机械设计课程设计手册 第5版》吴宗泽,罗圣国,高志,李威 2018
- 《指向核心素养 北京十一学校名师教学设计 英语 九年级 上 配人教版》周志英总主编 2019
- 《高等院校旅游专业系列教材 旅游企业岗位培训系列教材 新编北京导游英语》杨昆,鄢莉,谭明华 2019
- 《中国十大出版家》王震,贺越明著 1991
- 《近代民营出版机构的英语函授教育 以“商务、中华、开明”函授学校为个案 1915年-1946年版》丁伟 2017
- 《新工业时代 世界级工业家张毓强和他的“新石头记”》秦朔 2019
- 《智能制造高技能人才培养规划丛书 ABB工业机器人虚拟仿真教程》(中国)工控帮教研组 2019
- 《AutoCAD机械设计实例精解 2019中文版》北京兆迪科技有限公司编著 2019