当前位置:首页 > 文化科学教育体育
中学生数学知识百科全书
中学生数学知识百科全书

中学生数学知识百科全书PDF电子书下载

文化科学教育体育

  • 电子书积分:25 积分如何计算积分?
  • 作 者:孙震主编
  • 出 版 社:延吉:延边人民出版社
  • 出版年份:2002
  • ISBN:7806487549
  • 页数:952 页
图书介绍:
《中学生数学知识百科全书》目录

两点的距离 1

角 1

〔基础知识〕 1

一、基本概念 1

几何 1

平面图形 1

几何图形 1

直线 1

直线相交 1

线段 1

射线 1

线段中点 1

线段三等分点 1

两条直线互相垂直 2

邻补角 2

角的内部 2

平角 2

周角 2

角的平分线 2

直角 2

锐角 2

钝角 2

互为补角 2

互为余角 2

对顶角 2

互逆定理 3

互逆命题 3

垂线段 3

点到直线的距离 3

同位角 3

内错角 3

同旁内角 3

平行线 3

命题 3

真命题 3

假命题 3

公理 3

定理 3

证明 3

等腰三角形的底边 4

等腰三角形的腰 4

三角形 4

三角形的边 4

三角形的角 4

三角形的顶点 4

三角形的角平分线 4

三角形的中线 4

三角形的高 4

不等边三角形 4

等腰三角形 4

等边三角形 4

三角形的稳定性 5

全等形的对应顶点对应边 对应角 5

等腰三角形的顶角 5

等腰三角形的底角 5

辅助线 5

锐角三角形 5

直角三角形 5

钝角三角形 5

斜三角形 5

直角三角形的直角边 斜边 5

等腰直角三角形 5

三角形的外角 5

全等形 5

矩形 6

两条平行线的距离 6

角的平分线 6

线段的垂直平分线 6

四边形 6

四边形的边 顶点 6

凸四边形 6

四边形的对角线 6

四边形的内角 6

四边形的外角 6

多边形 6

平行四边形 6

比例线段中的项、比例外项、比例内项、第四比例项、比例中项 7

比例线段 7

菱形 7

正方形 7

梯形 7

梯形的底腰高 7

直角梯形 7

等腰梯形 7

三角形的中位线 7

梯形的中位线 7

比 7

比的前项 后项 7

株距 8

仰角俯角 8

黄金分割 8

相似三角形 8

相似三角形的相似比 8

相似多边形 8

锐角A的正弦 8

锐角A的余弦 8

锐角A的正切 8

锐角A的余切 8

∠A的锐角三角函数 8

解直角三角形 8

点的轨迹 9

等弧 9

坡度 9

坡角 9

圆 9

圆的内部 9

圆的外部 9

弦 9

直径 9

圆弧 9

半圆 9

优弧、劣弧 9

弓形 9

同心圆 9

等圆 9

弦心距 10

圆心角 10

一些常见的平面内的点的轨迹 10

三角形的外接圆 10

三角形的外心 10

圆的内接三角形 10

反证法 10

利用反证法证明命题的步骤 10

多边形的内切圆 圆的外切多边形 11

三角形的内心 圆的外切三角形 11

1°的弧 11

圆周角 11

圆内接多边形 11

多边形的外接圆 11

圆的内接四边形 11

直线和圆相交 11

割线 11

直线和圆相切 11

切线 切点 11

直线和圆相离 11

三角形的内切圆 11

圆弧连接 12

两圆公切线长 12

弦切角 12

两个圆外离 12

两个圆外切 12

两圆相交 12

两圆内切 12

两个圆相切 12

两个圆内含 12

两圆的公切线 12

两圆的外公切线 12

两圆的内公切线 12

平面 13

空间多边形 13

正多边形 13

正多边形的外接圆 13

正多边形的内切圆 13

正多边形的中心半径 边心距 中心角 13

圆周率 13

扇形 13

圆柱的母线 13

圆锥 13

空间图形 13

立体几何 13

两条异面直线的距离 14

两条异面直线的公垂线 14

空间两条直线的位置关系 14

异面直线 14

异面直线所成的角 14

两条异面直线垂直 14

平行 15

两个平面的位置关系 15

直线和平面的位置关系 15

点到平面的距离 15

互相平行的直线和平面的距离 15

平面的斜线 15

点到平面的斜线段 15

点在平面上的射影 15

直线在平面上的射影 15

直线和平面所成的角 15

多面体 16

两个平面互相垂直 16

相交 16

两个平行平面的距离 16

半平面 16

二面角 16

二面角的平面角 16

直二面角 16

棱柱 17

多面体的截面 17

多面体的棱 17

多面体的顶点 17

多面体的分类 17

凸多面体和凹多面体 17

棱台 18

棱锥的对角面 18

斜棱柱 18

直棱柱 18

正棱柱 18

平行六面体 18

直平行六面体 18

长方体 18

正方体 18

棱锥 18

棱锥的分类 18

正棱锥 18

正棱锥的斜高 18

旋转面 19

楔体 19

棱台分类 19

棱台的中截面 19

正棱台的斜高 19

截柱体 19

拟柱体 19

长方台 19

圆台 20

等边圆锥 20

圆柱面 20

圆锥面 20

球面 20

旋转体 20

圆柱 20

圆柱的轴截面 20

等边圆柱 20

圆锥 20

圆锥的轴截面 20

球台 21

球缺 21

圆台的轴截面 21

圆台的中截面 21

球体 21

球的大圆和球的小圆 21

球面上两点的距离 21

球冠 21

球带 21

有向线段 22

有向直线 22

正多面体的中心 22

正多面体的内切球 切棱球 外接球 22

多面角 22

凸多面角 22

多面角相等 22

多面角的对称 22

线段的定比分点 23

点的坐标 23

有向线段的长度 23

有向线段的数量 23

直角坐标系 23

平面直角坐标系 23

坐标平面 23

曲线的交点 24

曲线的对称性 24

曲线和方程 24

截距 24

直线系 25

两条直线所成的角 25

充分条件 必要条件 充要条件 25

曲线的渐近线 25

曲线的切线和法线 25

直线的倾斜角 25

直线的斜率 25

圆的切线 26

圆的一般式方程 26

二元一次不等式表示的区域 26

阿波罗尼斯圆 26

圆(解析中的) 26

椭圆第二定义 27

椭圆 27

圆的切点弦及切点弦方程 27

两圆的根轴 27

圆系 27

椭圆的离心率 28

椭圆的通径和焦参数 28

椭圆的标准方程 28

椭圆的长轴短轴顶点 28

椭圆的弦 28

椭圆的直径 28

椭圆的共轭直径 28

椭圆的半径 28

椭圆的焦半径 28

双曲线的弦 29

双曲线的渐近线 29

双曲线 29

双曲线第二定义 29

双曲线的标准方程 29

双曲线的中心顶点实轴 29

双曲线的极线和极 30

双曲线的切点弦 30

双曲线的焦半径 30

双曲线的通径和焦参数 30

双曲线的离心率 30

双曲线的直径 30

等轴双曲线 30

共轭双曲线 30

双曲线的切线和法线 30

双曲线的切线另一定义 30

抛物线的顶点轴 31

抛物线的标准方程 31

共渐近线双曲线系 31

抛物线 31

坐标轴的平移 32

抛物线的极线和极 32

抛物线的离心率 32

抛物线的焦半径 32

抛物线的焦点弦 32

抛物线的通径焦参数 32

抛物线的直径 32

抛物线的切线法线 32

抛物线的切点弦 32

普通方程 33

曲线的参数方程 33

坐标轴的平移公式 33

利用移轴化简二元二次方程 33

坐标系变换下的不变量 33

圆锥曲线 33

极坐标系 34

圆的渐开线 34

参数方程和普通方程的互化 34

常见曲线的极坐标方程 35

极坐标与直角坐标的互化 35

自然数 36

代数式 37

有效数字 37

整数 37

分数 37

有理数 37

正有理数 37

负有理数 37

数轴 37

相反数 37

相反数的几何意义 37

绝对值 37

倒数 37

乘方 37

底数 37

指数 37

幂 37

负整指数幂 37

零指数幂 37

科学记数法 37

同类项 38

整式 38

代数式的值 38

有理式 38

单项式 38

单项式的系数 38

单项式的次数 38

多项式 38

多项式的项 38

几项式 38

常数项 38

多项式的次数 38

齐次多项式 38

降幂排列 38

升幂排列 38

二元一次方程组 39

二元一次方程 39

合并同类项 39

等式 39

等式的左边 右边 39

方程 39

已知数 39

未知数 39

方程的元 39

方程的次数 39

方程的解 39

方程的根 39

解方程 39

移项 39

整式方程 39

一元一次方程 39

一元一次方程的最简形式 39

一元一次方程的一般形式 39

同解方程 39

方程组 39

完全平方公式 40

平方差公式 40

二元一次方程的解 40

解方程组 40

三元一次方程组 40

消元法 40

代入消元法 40

加减消元法 40

不等式 40

不等式的解集 40

解不等式 40

一元一次不等式 40

一元一次不等式的标准形式 40

一元一次不等式组 40

一元一次不等式组的解集 40

解不等式组 40

立方和与立方差公式(因式分解中) 41

完全平方公式(因式分解中) 41

立方和公式与立方差公式 41

因式分解 41

因式 41

公因式 41

提公因式法 41

运用公式法 41

平方差公式(因式分解中) 41

通分 42

最简分式 42

分组分解法 42

十字相乘法 42

二次三项式分解因式的方法(又简称求根法) 42

分式 42

分式的分子 分式的分母 42

简分式 42

繁分式 42

真分式 42

假分式 42

约分 42

无理数 43

无限不循环小数 43

最简公分母 43

字母系数 43

公式变形 43

分式方程 43

增根 43

平方根 43

开平方 43

算术平方根 43

立方根 43

开立方 43

n次方根 43

开n次方 43

n次算术根 43

开方 43

配方法 44

直接开平方法 44

实数 44

实数的几何意义 44

二次根号 44

被开方数 44

二次根式 44

分母有理化 44

分子有理化 44

有理化因式 44

最简二次根式 44

同类二次根式 44

整式方程 44

一元二次方程 44

二元二次方程 45

有理方程 45

一元二次方程的求根公式 45

公式法 45

因式分解法 45

根的判别式 45

无理方程 45

无理式 45

对称轴 46

二次函数 46

二元二次方程组 46

点在数轴上的坐标 46

平面直角坐标系 46

点在直角坐标系中的坐标 46

常量(数) 46

变量(数) 46

函数 46

函数值 46

函数的图象 46

一次函数 46

正比例函数 46

方差 47

中位数 47

顶点 47

最值 47

反比例函数 47

双曲线 47

平均数 47

加权平均数 47

总体 个体 样本 样本 容量 47

总体平均数 47

样本平均数 47

数集 48

无限集合 48

标准差 48

频数 48

频率 48

集合 48

元素 48

属于 48

不属于 48

有限集合 48

单元素集 48

空集 48

非空集合 48

韦恩图 49

全集 49

自然数集 49

整数集 49

有理数集 49

实数集 49

复数集 49

集合的表示方法 49

并集 50

交集 50

点集 50

子集 50

相等集合 50

真子集 50

幂集 50

逻辑联结词 51

假命题 51

补集 51

命题 51

真命题 51

充分条件 52

互为逆否命题 52

简单命题 52

复合命题 52

真值表 52

互逆命题 52

互否命题 52

映射 53

两个非空集合之间的对应 53

充要条件 53

对应 53

象 原象 53

复合映射 54

逆映射 54

满射 54

一一映射 54

区间 55

函数的表示方法 55

函数 55

常量与变量 55

解析式 55

函数图象 55

同一函数 55

正比例函数 56

复合函数 56

一元函数 56

二元函数 56

多元函数 56

常函数 56

线性函数 56

隐函数 56

显函数 56

二次函数 57

一次函数 57

反比例函数 57

幂函数 58

代数函数 59

初等函数 59

指数函数 59

对数函数 59

单调区间 60

单调性及单调函数 60

初等超越函数 60

有理函数 60

有理整函数 60

有理分函数 60

无理函数 60

反函数 60

增函数 60

减函数 60

三角学 61

角的概念 61

偶函数 61

奇函数 61

奇偶性 61

周期函数 61

最小正周期 61

最大值和最小值 61

最大值点和最小值点 61

函数方程 61

反正弦函数 62

轴上角 62

象限角 62

角的度量 62

三角函数 62

单位圆 62

正弦曲线 62

余弦曲线 62

周期函数 62

正切曲线 62

余切曲线 62

三角函数线 62

正弦型函数 62

终边相同的角 62

不等式组的解集 63

不等式的解集 63

反余弦函数 63

反正切函数 63

反余切函数 63

三角方程 63

不等式 63

同向不等式 63

异向不等式 63

矛盾不等式 63

绝对值不等式 63

分式不等式 63

无理不等式 63

指数不等式 63

对数不等式 63

三角不等式 63

一元一次不等式 63

一元二次不等式 63

解不等式 63

等比中项 64

等比数列 64

同解不等式 64

平均值不等式 64

柯西不等式 64

数列 64

项 64

通项公式 64

有穷数列 64

无穷数列 64

递增数列 64

递减数列 64

摆动数列 64

常数列 64

有界数列 64

无界数列 64

递推关系 64

等差数列 64

等差中项 64

组合数 65

排列数 65

数列极限 65

归纳法 65

数学归纳法 65

演绎法 65

加法原理 65

乘法原理 65

排列 65

组合 65

相关公式 66

复数分类 66

圆排列 66

二项式公式 66

可重复的排列 66

二项式定理 66

乘法交换律 67

加法结合律 67

复数定义 67

共轭复数 67

复数相等 67

复数的模 67

复数的辐角 67

复数的辐角主值 67

复数的三角式 67

复平面 67

二、定律 67

加法交换律 67

有理数加法的运算律 68

单调律 68

乘法结合律 68

乘法分配律 68

乘数和被乘数后面有零的乘法法则 69

两位乘多位数的乘法法则 69

有理数乘法运算律 69

运算定律 69

基本定律 69

三、法则 69

两位数加法法则 69

两位数减法法则 69

三、四位数加法法则 69

三、四位数减法法则 69

一位数乘法法则 69

除数是一位数的除法法则 69

小数加减法的计算法则 70

小数的写法法则 70

乘数是三位数的乘法法则 70

珠算减法法则 70

珠算加法法则 70

除数是三位数的除法法则 70

多位数的读法法则 70

多位数的写法法则 70

小数的读法法则 70

一个数除以分数的计算法则 71

分数乘以分数的计算法则 71

小数乘法的计算法则 71

除数是整数的小数除法计算法则 71

除数是小数的小数除法计算法则 71

整数 小数四则混合运算法则 71

求两个数的最大公约数的法则 71

求两个数的最小公倍数的法则 71

把假分数化成整数或者带分数的法则 71

同分母分数比较大小的法则 71

同分子分数比较大小的法则 71

同分母分数加 减法的计算法则 71

异分母分数加减法的法则 71

分数乘以整数的计算法则 71

有理数减法法则 72

有理数的加法法则 72

百分数和分数互化的法则 72

百分数和小数互化的法则 72

四则运算的法则 72

有理数大小比较法则 72

有理数的乘方法则 73

有理数除法法则 73

有理数乘法法则 73

单项式除以单项式法则 74

多项式乘以多项式法则 74

有理数的混合运算法则(顺序) 74

运算的顺序法则 74

合并同类项法则 74

去括号法则 74

添括号法则 74

移项法则 74

单项式乘以单项式法则 74

单项式乘以多项式法则 74

分式的乘法法则 75

分式的除法法则 75

多项式除以单项式法则 75

分式的符号法则 75

分式的加法法则 75

分式的减法法则 75

分式的乘方法则 75

复数三角式的乘除法法则 76

复数代数式的四则运算法则 76

二次根式的加减法法则 76

二次根式的乘除法则 76

幂的运算法则 76

对数运算法则 76

极限运算法则 76

射线性质 77

直线性质 77

四、性质定理公式 77

小数的性质 77

分数的基本性质 77

比例的基本性质 77

有关公式 77

平行线性质 78

相交线性质 78

线段性质 78

平行线判定 79

与数量相关的角 80

角的表示方法与性质 80

与位置相关的角的表示方法与性质 81

角的平分线的表示方法与性质 82

等腰三角形的表示法与性质 82

对称图形表示法与性质 83

线段的垂直平分线的表示法与性质 83

常见的轴对称图形 84

轴对称图形表示法与性质 84

常见的中心对称图形 85

中心对称图形性质 85

两个图形关于点对称(中心对称)表示法与性质 85

三角形的性质 86

按边的相等关系分类 86

三角形按角分类 86

直角三角形表示法与性质 87

腰与底边相等(等边三角形)表示法与性质 87

等腰三角形的表示法与性质 87

45°的直角三角形的表示法与性质 88

30°的直角三角形的表示法与性质 88

平行四边形的表示法与性质 89

四边形的表示法与性质 89

全等三角形的表示方法与性质 89

正方形表示法与性质 90

菱形表示法与性质 90

矩形表示法与性质 90

等腰梯形表示法与性质 91

直角梯形表示法与性质 91

梯形表示法与性质 91

成比例线段性质 92

相似多边形表示法与性质 93

相似三角形表示法与性质 93

圆的表示法与性质 94

点与圆的性质 95

直线与圆性质 96

圆与圆性质 97

正多边形和圆性质 98

平面的基本性质 99

圆柱、圆锥的侧面展开图性质 99

圆弧、扇形、弓形性质 99

直线和平面平行的性质定理 100

空间两条直线平行的判定 100

空间两条异面直线的判定定理 100

直线和平面垂直的判定 101

空间直线和平面平行的判定 101

直线和平面垂直的性质定理 101

两个平面平行的性质定理 101

空间两条直线垂直的判定 101

三垂线定理 101

三垂线定理的逆定理 101

两个平面垂直的判定及性质 102

空间两个平面平行的判定 102

空间有关直线、平面的等量定理 103

棱柱的体积 104

棱柱的侧面积 104

几个公式 104

棱柱的性质 104

直棱柱的性质 104

正棱柱的性质 104

正棱锥的侧面积 105

正棱锥的性质 105

棱锥的性质 105

圆柱的体积 106

圆柱的侧面积 106

棱台的性质 106

正棱台的性质 106

正棱台的侧面积 106

棱台的体积 106

祖恒原理 106

欧拉公式 106

圆柱的性质 106

球的性质 107

圆台的体积 107

圆锥的性质 107

圆锥的侧面积 107

圆锥的体积 107

圆台的性质 107

圆台的侧面积 107

平面上两点的距离公式 108

沙尔定理 108

球的面积 108

球的体积 108

球冠(带)的面积 108

球缺的体积 108

拟柱体的体积 108

数轴上有向线段?的数量公式 108

数轴上有向线段?的长度公式 108

直线方程的几种形式 109

直线的斜率公式 109

线段的定比分点坐标公式 109

三角形重心坐标公式 109

三角形面积公式 109

两条直线平行定理 110

直线上的两点距离公式 110

法线式方程 110

几种特殊的直线方程 110

点到直线的距离公式 110

圆的一般式方程 111

圆的标准方程 111

两条直线垂直定理 111

两条直线相交定理 111

直线l1到l2的角的正切公式 111

直线l1与l2的夹角与公式 111

直线系方程 111

椭圆的通径长公式 112

椭圆的焦半径公式 112

圆的切线方程 112

圆系方程 112

切点弦方程 112

切线长公式 112

椭圆的标准方程 112

等轴双曲线方程 113

准焦距公式 113

椭圆的准焦距 113

焦半径公式 113

通径长 113

准焦距 113

椭圆的切线方程 113

双曲线的标准方程 113

焦半径公式 113

通径长公式 113

移轴公式 114

抛物线的切线方程 114

共轭双曲线方程 114

双曲线的切线方程 114

双曲线系 114

抛物线的标准方程 114

抛物线焦半径公式 114

抛物线的焦点弦长公式 114

主要曲线的参数方程 115

空间的点的基本轨迹 116

极坐标与直角坐标的互化公式 116

极坐标系 116

等式的性质 120

绝对值的性质 120

有理数性质 120

实数性质 120

根式的性质 120

二次函数的性质 121

一次函数的性质 121

不等式的基本性质 121

分式的基本性质 121

同底数幂乘除法的性质 121

幂的乘方的性质 121

积的乘方的性质 121

正比例函数的性质 121

相向运动求另一速度 122

相向相遇求时间 122

反比例函数的性质 122

路程公式 122

相向相遇求路程 122

几何图形的面积公式 123

追及问题 123

整式的乘法公式 124

工程问题涉及的公式 124

a2与(?)2的不同 125

立方和、立方差公式的特点 125

因式分解公式 125

平方差公式的特点 125

完全平方公式的特点 125

统计初步所涉及的公式 126

一元二次方程的求根公式 126

对数的性质 127

一次函数的性质 128

周期函数的性质 128

指数的性质 128

反函数的性质 128

奇函数、偶函数的性质 128

增函数、减函数的性质 128

反比例函数的性质 129

二次函数的性质 129

幂函数的性质 130

指数函数的性质 131

复合函数的单调性 132

复合函数的性质 132

对数函数的性质 132

三角函数基本性质 133

换底公式 133

映射个数公式 133

周期公式 134

同角三角函数的基本关系式 134

孤长公式 134

扇形面积公式 134

辅助角公式 135

解斜三角形定理 135

两角和与差的三角函数基本公式 135

三角函数的万能公式 135

三角函数的积化和差与和差化积公式 135

最简单的三角方程的解集 136

条件等式 136

反三角恒等式 136

几个重要极限 137

数列公式 137

不等式的性质 137

不定式有关定理 137

等比数列性质 138

等差数列性质 138

棣莫佛定理 139

共轭复数性质 139

i的乘方性质 139

w=-1/2+?/2 i性质(1的立方根) 139

复数模的性质 139

复数与几何 140

复数开方的几何意义 140

复数与点的一一对应 140

复数加法的几何意义 140

复数减法的几何意义 140

复数乘法的几何意义 140

复数除法的几何意义 140

研究点的轨迹问题的步骤 141

求角 142

一、关于几何计算问题 142

〔基本技能〕 142

锐角三角函数 145

解直角三角形 147

测物体的高度 148

方位角的问题 150

水位的问题 150

山坡上植树问题 150

触礁问题 151

大坝问题 152

利用垂径定理计算 154

切线的判定和性质计算 155

利用圆周角定理及推论计算 155

利用三角形的内切圆计算 156

利用切线长定理计算 157

和圆有关的比例线段 158

圆和圆的位置关系 160

两圆的公切线 161

正多边形的有关计算 162

关于求周长、弧长的计算 163

关于求面积 165

平行线判定与性质应用 171

平行线的性质 171

二、定理的证明与应用 171

平行线的判定 171

三角形的内角和 172

角的平分线 174

三角形全等的判定 174

推论1 176

等腰三角形的性质 176

等腰三角形的判定 177

推论2 177

线段的垂直平分线 180

勾股定理 181

四边形 183

平行四边形性质 184

多边形的内角和 184

平行四边形的判定 186

矩形性质 188

矩形的判定 189

菱形的性质 190

等腰梯形判定定理 191

梯形中位线定理 192

三角形中位线定理 192

平行线等分线段定理 193

关于成比例的数的性质 194

平行线分线段成比例定理 196

三角形一边平行线的判定 197

三角形一边的平行线的性质 198

三角形相似的判定 199

相似三角形的性质 203

垂直于弦的直径 204

圆心角、弧、弦、弦心距之间的关系 207

圆周角 210

圆的内接四边形 213

切线的判定 214

切线的性质 215

切线长定理 216

弦切角的应用 218

弦切角 218

相交弦定理 219

切割线定理 220

相交弦定理的推论 220

圆和圆的位置关系定理 221

推论 221

正多边形和圆定理 222

正多边形的有关计算定理 223

用平面的概念和性质解题 224

证三点(多点)共线方法 225

证三线(多线)共点的基本方法 226

证共面问题常用方法 227

求异面直线的距离常用方法 229

证异面直线的方法 229

证线线平行的方法 231

证线面平行的方法 233

求异面直线所成的角 234

证面面平行的方法 234

求直线与平面所成的角的方法 235

求二面角的方法 237

证线线垂直的方法 239

证线面垂直的主要方法 241

证面面垂直的方法 243

求点到面的距离 244

求多面体或旋转体表面上两点的最短距离 245

球面上两点距离的求解 246

用棱柱的概念解题 247

用棱锥的定义和基本概念 解题 250

用棱台的定义和基本概念 解题 253

用圆柱 圆锥 圆台的概念及有关性质解题 255

球 球冠 球缺 球台 259

平行于锥体底面的截面截得的几何体有关问题的求解 262

体积问题的求解 264

面积问题的求法 267

用有向线段定比分点的概念解题 269

解析法解题 272

求点的坐标的方法 274

证三点共线常用的方法 276

利用定比分点坐标公式解题 277

点与直线的位置关系 277

直线位置关系的确定 279

求直线的斜率的常用方法 280

求直线的方程的常用方法 281

求曲线方程的方法 285

充要条件 289

曲线的交点 290

求圆的方程 291

求圆的切线 293

求直线和圆相交所得弦长问题 295

用椭圆的定义和标准方程解题 296

求椭圆方程 299

直线和椭圆相交所得弦长求法 301

椭圆与直线位置关系的确定 301

直线与椭圆相交有关轨迹方程问题 302

与椭圆有关的最大值 最小值问题 305

与椭圆有关的证明问题 308

用双曲线定义及标准方程解题 311

求双曲线的方程 314

直线与双曲线位置关系 316

与双曲线有关的最值问题 318

与双曲线相关的轨迹问题 320

与双曲线有关的证明问题 322

用抛物线定义和标准方程解题 325

求抛物线的方程 329

直线与抛物线位置关系的确定 330

与抛物线有关的最值问题 331

与抛物线有关的证明问题 333

与抛物线有关的轨迹问题 336

利用移轴公式解题 337

利用移轴公式求圆锥曲线的有关元素 339

利用坐标变换下的不变量解题 340

在平面直角坐标系上的图形移动问题 340

非标准位置下的曲线与曲线直线与曲线的位置关系问题 342

求非标准位置的曲线方程 343

把参数方程化为普通方程 345

把普通方程化为参数方程 345

直线参数方程的应用 347

圆锥曲线的参数方程的应用 349

极坐标与直角坐标的互化 350

求曲线的极坐标方程 351

用极坐标解题 352

圆锥曲线的极坐标方程及其应用 353

几种基本作图 355

利用绝对值比较两个负数大小的法则 367

有理数的大小比较法则 367

三、法则 367

进行有理数乘法运算的步骤 368

有理数的乘法法则 368

有理数的加法法则 368

有理数的减法法则 368

有理数乘方运算的符号法则(幂的符号法则) 369

有理数的除法法则 369

多个有理数乘积的确定(有理数乘法法则的推广) 369

有理数的混合运算顺序 370

去括号法则 371

合并同类项法则 371

单项式乘法法则 373

移项法则 373

添括号法则 373

多项式乘以多项式法则 375

单项式乘以多项式法则 375

多项式除以单项式法则 376

单项式除以单项式法则 376

分式的加减法法则 377

分式的符号法则 377

分式的除法法则 379

分式的乘法法则 379

二次根式的加减法法则 380

分式的乘方法则 380

二次根式的乘除法法则 381

实数 382

有理数 382

四、性质 382

积的算术平方根的性质 383

二次根式的性质 383

绝对值的性质 384

商的算术平方根的性质 384

等式的性质 385

分式的基本性质 386

不等式的基本性质 386

幂的有关性质 387

分式基本性质的应用 387

积的乘方的性质 388

幂的乘方的性质 388

同底数幂的除法的性质 389

正比例函数的性质 390

一次函数的性质及应用 391

二次函数的性质及应用 392

反比例函数的性质 394

工作量=工作效率×工作时间 395

s=vt 395

五、公式 395

S=1/2 ah 396

有关图形面积的计算公式 396

S=ab 397

S=a2 397

整式的乘法公式 399

(4)V圆锥=1/3 πr2h 399

有关体积的计算公式 399

因式分解的公式 402

关于?,(?)2 (a≥0)的公式 403

一元二次方程的求根公式 404

方差计算公式 405

平均数计算公式 405

集合的概念 406

标准差计算公式 406

集合的表示法 408

子集 410

从属关系: 410

交集 415

并集 418

补集与全集 419

集合的应用 420

逻辑联结词 421

四种命题 423

充要条件 425

映射的概念 428

函数的概念 430

函数的定义域 431

复合函数的解析式 433

复合函数的定义域 433

①换元法②凑合法③待定系数法④消去法 435

函数的值域与最值 436

用幂函数概念解题 443

幂函数的图象 444

比较大小问题 444

函数的单调性 446

函数的奇偶性 449

函数的单调性与奇偶性相结合的问题 452

指数计算问题 456

指数函数比较大小问题 457

指数求值问题 457

指数化简问题 457

判断奇偶性问题 458

求复合函数的最大(小)值及值域问题 459

简单的指数不等式的解法 460

求复合函数的单调区间 460

对数求值问题 461

求复合函数的反函数 461

指数比较大小问题 463

证明问题 463

求值域问题 464

对数函数求定义域问题 464

对数比较大小问题 465

求单调区间 466

求反函数 467

判断奇偶性 467

图象 468

不等式问题 468

对数方程 469

对数方面的综合题 470

求反函数 473

原函数与反函数图象之间的关系 474

恒等式在反函数中的应用 475

求反三角函数值 475

反函数恒等式 475

函数的周期性 476

用任意角的三角函数解题 478

求值问题和化简问题 480

三角恒等式的证明问题 484

利用三角函数线解题 486

求三角函数的定义域 487

求函数值域及最大最小值 488

求三角函数的周期(最小正周期) 489

判断三角函数的奇偶性 490

函数y=Asin(ωx+φ)的内容初探 491

判断三角函数的单调性 491

两角和与差的三角函数 493

利用基本公式求值 495

利用倍角与半角的三角函数公式求值 497

二倍角公式的变形及其升降幂作用 498

利用三角函数的积化和差与和差化积公式求值与化简问题 503

积化和差与和差化积中的升降幂问题 504

积化和差与和差化积在条件等式求值与证明中的应用 506

解斜三角形及三角形中的三角函数 511

判断三角形形状问题 514

求反三角函数的定义域值域 515

利用基本公式和基本概念求值 516

求任意单调区间上的反函数 518

判断反三角函数的奇偶性和单调性 518

解不等式 519

证明等式问题 520

最简单的三角方程 522

不等式证明的常用方法 523

不等式证明中的一题多解 531

一元一次不等式的解法 534

有理不等式的解法 534

一元二次不等式的解法 535

求函数中字母的取值或范围 537

无理不等式的解法 538

高次不等式的解法 538

指数与对数不等式的解法 541

绝对值不等式 543

利用常见不等式求函数的最值 两个重要结论 545

利用不等式讨论方程实根的个数与性质 548

利用等差中项解题 549

利用数列定义解题 550

利用等差定义解题 550

利用通项公式an=a1+(n-1)d解题 551

利用Sn=na1-n(n-1)/2 d=n(a1+an)/2解题 552

利用性质m、n、p、q∈ N 且m+n=p+q,则am+an=ap+aq解题 553

利用an-am=(n-m)d解题 554

利用性质S2n-1=(2n-1)an解题 555

利用等差数列性质 556

利用等差数列中,Sm=Sn=l则Sm+n=O 556

利用等差数列中,Sn,S2n —Sn,S3n —S2n为等差数列解题 556

利用等比数列通项公式an=a1qn-1解题 557

利用等比定义解题 557

利用等比数列解题 559

利用an与Sn关系解题 559

利用等比数列前n项和Sn=a1(1-qn)/(1-q)(q≠1)解题 559

数列通项公式求法观察法 560

给出数列前n项求数列的通项公式 561

利用an=?求an 561

应用整体思想解数列题 563

用不等式性质解数列问题 564

应用比例性质解数列题 564

三角中数列问题 566

数列中存在性问题 567

数列中相同项问题 569

等差数列中最值问题 570

用函数解数列题 571

其他数列题 574

数列求和 577

数列应用题 582

数列极限 589

极限应用 595

数学归纳法运用 598

用数学归纳法证明等式 602

用数学归纳法证明不等式 604

用数学归纳法证明整除问题 607

用数学归纳法证明几何结论 609

存在性问题 610

归纳 猜想 证明 613

排列问题 619

用排列组合基本原理解题 619

组合问题 621

排列与组合的综合题 623

二项式求项数、系数的问题(包括求有理项、常数项) 624

用赋值法求系数和的问题 625

利用二项式定理证明恒等式 626

利用复数模的定义解题 627

用二项式定理证明不等式问题 627

用二项式定理证明整除问题 627

利用复数及复数模定义解题 629

利用复数相等定义解题 631

利用共轭复数定义解题 631

利用复数分类解题 631

利用三角式定义解题 633

利用辐角定义解题 634

复数相等定义(求θ值) 634

利用复数几何意义解题 635

利用特值解题 636

共轭性质,模的性质 638

利用“||z1|-|z2||≤|z1+z2|≤|z1|+|z2|”解复数题 639

利用模及共轭性质解题 640

利用棣莫佛定理解题 643

利用复数加法法则解题 644

利用排除法解题 644

利用复数的n次方根公式解题 644

利用复数减法几何意义解题 645

利用乘除法法则解题 645

利用复数乘法几何意义解题 646

利用复平面上两点之间距离公式解题 648

利用复数除法几何意义解题 648

复数的代数式化成三角式方法 651

复数三角式 653

复数与三角(构造法) 655

利用棣莫佛定理证明三倍 角的正弦 余弦公式 656

换元法(解复题) 658

利用复数求函数值域 661

复数与方程 662

复数与数列 665

概念间类比 669

类比思想方法 669

〔思想方法技巧〕 669

数学思想方法技巧 669

数学思想方法的重要性 669

数学思想方法的教学原则 669

平面问题与空间问题类比 670

数与形之间的类比 670

法则间类比 670

性质间类比 670

定理与定理间的类比 670

概念分类 673

分类要求 673

分类思想方法 673

定理的证明运用分类思想 674

法则中分类思想 674

分类讨论的思想 675

方程类型不确定分类讨论 676

分类思想与数形结合思想 676

分类讨论思想(点不确定) 677

相等边的不确定性分类讨论 677

点的不确定型分类讨论 678

运用分类法解方程问题 679

利用模定义和辐角定义解题 682

用整体思想代入求值 683

整体思想 683

运用整体思想方法解应用题 686

配方法证明代数式的值为正或为负 689

配方法解方程 689

用配方法求代数式的值 690

推导求根公式 690

求二次函数解析式 691

求一次函数解析式 691

待定系数法 691

求正比例函数解析式 691

换元法化简 692

换元法求值(常数接元) 692

整体换元 693

换元法证明等式 693

换元法解高次方程 694

换元法解方程(带绝对值) 694

换元法因式分解 694

换元法解分式方程 695

换元法解无理方程 697

换元思想 698

换元法 699

数形结合法 700

数形结合思想 701

数与数轴的结合 701

复杂问题简单化 709

几何意义 709

由特殊到一般 712

化归思想 713

化归法——利用化归法求面积 714

化归法—三角函数中“1”化归为“式” 714

函数与方程的思想方法 715

转化的思想方法 717

梯形辅助线的作法 719

添辅助线的常用方法 719

中点及中点问题 721

巧作平行线 解几何题 722

证线段的倍与分,常用加倍延长法或等分缩短法 724

证线段的和与差,常用延长或截短法 724

用三角形全等证线段(或角)相等 725

圆中常见的辅助线 727

判定切线时常用的辅助线 730

以切线为辅助线 731

两圆相交时常用的辅助线 732

两圆相切时常用的辅助线 733

涉及两圆内、外公切线的计算时常作的辅助线 734

利用圆的对称性作辅助线 735

以外接圆为辅助线 736

参数法求值 737

规律 737

主元法求值 737

规律 737

利用根与系数的关系求值 737

规律 737

转化法—公式变形转化求值 737

分组分解法 738

规律 738

规律 738

利用韦达定理求值 738

规律 738

因式分解提公式法 738

规律 738

十字相乘法 738

求根公式法 739

规律 739

规律 739

拆项法 739

规律 739

添项法 739

规律 739

公式法 739

逐项相加法 740

规律 740

规律 740

用字母表示数法 740

规律 740

配方法 740

规律 740

倒数法 740

规律 741

直接开平方法解方程 741

规律 741

裂项相消法 741

规律 741

整体代入法 741

规律 741

分步代入法 741

规律 741

因式分解法解方程 742

规律 742

配方法解方程 742

规律 742

公式法解方程 742

换元法解分式方程 743

规律 743

规律 743

去分母法解方程 743

利用分比定理解方程 744

规律 744

规律 744

两边分别通分法解方程 744

规律 744

分离整式法解方程 744

换元法解无理方程 745

两边平方法解方程 745

规律 745

利用设比值法解方程 746

规律 746

规律 746

用分母有理化法解方程 746

规律 746

利用合分比定理法解方程 746

同一法 747

综合法 747

规律 747

分析法 747

运用同一法证题时应注意什么 748

什么样的命题适于同一法 748

分离线段集中法 749

平移法——添加辅助线平移角 749

什么样的命题适于待定分点法 750

待定分点法 750

规律 750

动与静的转化 751

代换转化—用a/c=c/b代替c2=ab解题 752

规律 752

代换转化—角与角的互相转化 752

转化法—将几何问题转化为代数问题 753

构造方程组(转化) 753

规律 753

转化法—把三角函数值转化为线段的比 754

规律 754

规律 755

转化法—变换视角 755

规律 755

转化法—等量转换 755

规律 755

用代数法求角度 756

规律 756

转化法—对称转换 756

规律 756

用代数法求线段长 756

用线示法解应用题 757

规律总结 757

规律总结 757

平移变换法解应用题 757

用图示法解应用题 758

规律总结 758

规律总结 758

用列表法解应用题 758

角平分线 759

口诀 直角三,引高线,高错角,两对现,相似形,共三对,有母子,有姐妹,幂积换,最方便,找射影,就出现 759

规律总结 759

利用基本图形分析法证明几何题 759

射影型 759

角分垂、等腰归 760

角分平,等腰成 760

类射影型 761

它的性质 762

?字型,?字型 762

它的性质 766

与圆有关的线段构造基本图形 766

它的性质 767

反证法 768

什么样的命题适于反证法 769

用反证法证明命题的一般步骤 769

反面思考法 772

同一法 772

在运用反证法时 应注意的几个问题 772

参数的思想方法 773

反客为主法 776

特殊值法 777

构造方程(组) 778

构造法 778

构造正三角形 779

构造完全平方公式 779

构造平方差公式 779

构造直角三角形 780

规律 781

利用“割”与“补”构造直角三角形 781

构造直角三角形,解决证明问题 782

构造等腰三角形解决实际问题 782

构造相似形求线段长 783

规律 783

规律 783

构造特殊图形证明线段垂直 783

规律 784

规律 784

构造平行四边形 785

构造模型 787

构造矩形 787

坐标法解题 789

求曲线方程的基本方法 792

用定义法 793

待定系数法 795

几何法 798

复数法 799

相关法 800

间接法 800

交轨法 802

参数法 803

应用加法交换律、结合律简化运算 805

整体代换 805

字母代数 805

应用乘法分配律简化运算 806

应用乘法交换律、结合律简化运算 806

先拆项,后应用加法交换律、结合律简化运算 806

列竖式计算 807

用分离系数法计算 807

利用因式分解简化运算 807

比例因子法 808

间接解法 808

提取公因式法 808

把某一项作为“整体” 808

利用韦达定理的逆定理构造方程 809

巧避“非必求” 809

同消法 809

叠加法 809

换元法求值 810

利用对称性 810

利用方程的根的定义构造方程 810

利用特殊值 810

利用根的判别式 811

利用非负数的性质 811

构造多项式 811

分子有理化 811

倒数法 811

构造乘法公式 811

构造矩形 812

构造函数 812

换元法证明不等式 812

[注]若|a|+|b|=|a+b|,则ab≥O 812

建立直角坐标系 813

构造正方形 813

构造锐角三角形,钝角三角形,用余弦定理 814

构造直角梯形 815

构造直角三角形 815

反用乘法公式 816

正用乘法公式 816

补项 817

拆项 817

乘法公式(法则)的综合运用 817

乘法公式的活用 817

数字幂的周期性 817

局部结合 818

整式处理 818

拆项、补项 818

合理选取“主元”按其次数进行分组 818

配方 818

部分提取公因式,分解部分因式 818

[注]对ax2+bxy+cy2+dx+ey+f令x=0,原式=cy2+ey+f=(A2y+m)(B2y+n)令y=0,原式=ax2+dx+f=(A1x+m)(B1x+n)则ax2+bxy+cy2+dx+ey+f=(A1x+A2y+m)(B1x+B2y+n) 819

分解质因数 819

括号全部展开后再分组 819

括号部分展开后再整体处理 819

合理代换 819

先部分用公式,再整体处理 819

利用求根公式 819

条件分式求值的方法 820

双十字相乘 820

[注]当a+b+c=0时,a3+b3+c3=3abc 820

换元 820

分式化简的方法 823

解分式方程的技巧 825

分母有理化的技巧 827

二次根式求值的技巧 828

解无理方程的技巧 830

平方法 830

逆用根的定义 831

巧用解法求根 832

[注]当a+b+c=0时;a3+b3+c3=3abc 833

分子有理化 833

复活判别式 834

因式分解法 834

构造方程组 834

变式应用 835

韦达定理的逆向应用 835

活用韦达定理(根与系数的关系定理) 835

构造新方程 836

一元二次方程两根之差的绝对值 837

利用面积为媒介巧解几何题 838

一元二次方程一个定理的妙用 838

用三角函数的定义证几何题 840

证明关于两直线平行的问题 841

证明关于两角相等的问题 844

利用特殊三角形求角和线段 845

利用“割”与“补”方法解不规则图形面积 846

利用全等三角形证明线段相等 846

列方程解应用题 848

复合应用题 848

〔数学应用〕 848

一、基础篇 848

简单应用题 848

求比一个数多几的数的应用题 849

求两数相差多少应用题 849

用比例知识解应用题 849

求总数应用题 849

求剩余应用题 849

求一个数是另一个数的几倍的应用题 850

求一个数里包含几个另一个数的应用题 850

求比一个数少几的数的应用题 850

求相同加数和的应用题 850

求一个数的几倍是多少的应用题 850

连乘应用题 851

含有两个已知条件的两步计算应用题 851

比较容易的两步计算的应用题 851

含有三个已知条件的两步计算应用题 851

归一应用题 852

连除应用题 852

有关长方形和正方形周长计算的应用题 853

归总应用题 853

有关长方形和正方形的面积计算的应用题 854

小数乘法应用题 856

小数加、减法应用题 856

三步计算应用题 856

求平均数应用题 856

相遇应用题 857

分数加、减法应用题 857

小数除法应用题 857

四步计算应用题 857

有关平行四边形、三角形、梯形面积计算的应用题 858

求一个数是另一个数几分之几的应用题 858

稍复杂的求平均数应用题 858

有关长方体、正方体表面积和体积(容积)的应用题 859

百分数应用题 860

分数除法应用题 860

分数乘法应用题 860

按比例分配应用题 861

工程应用题 861

有关圆的周长和面积计算的应用题 862

列方程解应用题 862

有关比例尺应用题 862

和倍应用题 863

圆柱、圆锥表面积和体积计算应用题 863

盈亏问题 864

流水问题 864

差倍应用题 864

年龄应用题 864

植树应用题 864

连续数的应用题 865

最大公约数与最小公倍数应用题 865

浓度问题 865

牛顿问题 866

背向运动问题(相离问题) 866

时钟问题 866

同向运动问题(追及问题) 866

韩信点兵问题 867

方阵问题 868

重叠问题 869

用分析法解应用题 870

用综合法解应用题 870

二、提高篇 870

常用解应用题方法 870

用假设法解应用题 871

用还原法解应用题 871

用类比法解应用题 872

用对应法解应用题 872

用消去法解应用题 873

用替代法解应用题 873

用列举法解应用题 874

用图解法解应用题 875

用转化法解应用题 875

用量不变法解应用题 877

用设数法解应用题 878

用代数法解应用题 879

行程问题 880

等积变形 880

列一元一次方程解应用题 880

和倍、差倍问题 880

工程问题 882

行程问题 882

可化为一元一次方程的分式方程的应用 882

连续数问题 883

数字问题 883

数字问题 883

浓度问题 883

一元二次方程的应用 883

两位数或三位数问题 884

两位数问题 884

折纸问题 885

面积问题 885

四位数(可用整体思想归结为两位数)问题 885

用整体思想求多位数问题 885

围篱笆问题 886

修渠问题 886

修路问题 886

窗户(或透光)问题 886

可归结为降低率的浓度问题 887

降低率问题 887

动点问题 887

增长率问题 887

行程问题 888

可化为一元二次方程的分式方程的应用 888

增长率 888

利率 888

流水行程问题 889

注水、放水问题 889

工程问题 889

行程问题 890

和倍、差倍问题 890

列一次方程组解应用题 890

百分率问题 892

数字问题 893

配套问题 893

调配问题 893

社会生活类 894

应用性数学问题 894

自然数 895

日常生活类 896

经济类 896

生产类 897

金融活动类 899

错车类 899

设计类 901

商品流通类 901

存在类 903

猜想(联想)类 903

推理类 904

游戏类 905

编题类 906

后续知识类 906

多学科交叉类 907

折纸类 908

中国古代类 909

外国类 910

实用类 911

用立体几何知识解决工程生产、科研问题 912

用解析几何知识解决生活、生产、军事、科研、商业营销问题 913

阿基米德 917

欧几里德 917

〔数学史料〕 917

刘徽 917

祖冲之 917

华罗庚 917

牛顿 918

帕斯卡 918

丢番图 918

韦达 918

笛卡尔 918

中学生学习数学的方法 919

高斯 919

数学思维的培养 920

数学基本能力的培养 920

数学知识结构 921

数学的教学原则 922

数学的教学目的 922

数学的教学方法 924

中学数学方法论 927

中学数学教材 927

中学数学教学大纲 927

教育评价 928

数学教育的比较研究方法 928

数学教育的研究法 931

教育评价的方法 932

经验材料的数学组织化方法 934

数学材料的逻辑组织化方法 937

数学教学 939

数学教育学 939

数学技能 940

附录一 部分中英文词汇对照表 941

附录二 部分常用数学符号表 950

返回顶部