当前位置:首页 > 数理化
原子和量子物理学
原子和量子物理学

原子和量子物理学PDF电子书下载

数理化

  • 电子书积分:16 积分如何计算积分?
  • 作 者:H.Haken,H.C.Wolf
  • 出 版 社:北京:世界图书出版公司北京公司
  • 出版年份:2003
  • ISBN:7506259540
  • 页数:503 页
图书介绍:
上一篇:摩擦学概论下一篇:复变函数方法
《原子和量子物理学》目录

1. Introduction 1

1.1 Classical Physics and Quantum Mechanics 1

1.2 Short Historical Review 1

2. The Mass and Size of the Atom 5

2.1 What is an Atom? 5

2.2 Determination of the Mass 5

2.3 Methods for Determining Avogadro’s Number 7

2.3.1 Electrolysis 7

2.3.2 The Gas Constant and Boltzmann’s Constant 7

2.3.3 X-Ray Diffraction in Crystals 8

2.3.4 Determination Using Radioactive Decay 9

2.4 Determination of the Size of the Atom 10

2.4.1 Application of the Kinetic Theory of Gases 10

2.4.2 The Interaction Cross Section 11

2.4.3 Experimental Determination of Interaction Cross Sections 14

2.4.4 Determining the Atomic Size from the Covolume 15

2.4.5 Atomic Sizes from X-Ray Diffraction Measurements on Crystals 15

2.4.6 Can Individual Atoms Be Seen? 20

Problems 25

3. Isotopes 27

3.1 The Periodic System of the Elements 27

3.2 Mass Spectroscopy 29

3.2.1 Parabola Method 29

3.2.2 Improved Mass Spectrometers 32

3.2.3 Results of Mass Spectrometry 33

3.2.4 Modern Applications of the Mass Spectrometer 34

3.2.5 Isotope Separation 35

Problems 36

4. The Nucleus of the Atom 37

4.1 Passage of Electrons Through Matter 37

4.2 Passage of Alpha Particles Through Matter(Rutherford Scattering) 39

4.2.1 Some Properties of Alpha Particles 39

4.2.2 Scattering of Alpha Particles by a Foil 39

4.2.3 Derivation of the Rutherford Scattering Formula 41

4.2.4 Experimental Results 46

4.2.5 What is Meant by Nuclear Radius? 47

Problems 48

5. The Photon 49

5.1Wave Character of Light 49

5.2Thermal Radiation 51

5.2.1 Spectral Distribution of Black Body Radiation 51

5.2.2 Planck’s Radiation Formula 53

5.2.3 Einstein’s Derivation of Planck’s Formula 54

5.3The Photoelectric Effect 58

5.4 The Compton Effect 60

5.4.1 Experiments 60

5.4.2 Derivation of the Compton Shift 62

Problems 64

6. The Electron 69

6.1 Production of Free Electrons 69

6.2 Size of the Electron 69

6.3 The Charge of the Electron 70

6.4 The Specific Charge e/m of the Electron 71

6.5 Wave Character of Electrons and Other Particles 74

6.6 Interferometry with Atoms 78

Problems 79

7. Some Basic Properties of Matter Waves 81

7.1 Wave Packets 81

7.2 Probabilistic Interpretation 85

7.3 The Heisenberg Uncertainty Relation 87

7.4 The Energy-Time Uncertainty Relation 89

7.5 Some Consequences of the Uncertainty Relations for Bound States 90

Problems 93

8. Bohr’s Model of the Hydrogen Atom 95

8.1 Basic Principles of Spectroscopy 95

8.2 The Optical Spectrum of the Hydrogen Atom 97

8.3 Bohr’s Postulates 100

8.4 Some Quantitative Conclusions 104

8.5 Motion of the Nucleus 105

8.6 Spectra of Hydrogen-like Atoms 107

8.7 Muonic Atoms 109

8.8 Excitation of Quantum Jumps by Collisions 111

8.9 Sommerfeld’s Extension of the Bohr Model and the Experimental Justification of a Second Quantum Number 114

8.10 Lifting of Orbital Degeneracy by the Relativistic Mass Change 115

8.11 Limits of the Bohr-Sommerfeld Theory.The Correspondence Principle 116

8.12 Rydberg Atoms 117

8.13 Positronium,Muonium,and Antihydrogen 119

Problems 121

9. The Mathematical Framework of Quantum Theory 125

9.1The Particle in a Box 125

9.2The Schr?dinger Equation 129

9.3. The Conceptual Basis of Quantum Theory 131

9.3.1 Observations, Values of Measurements and Operators 131

9.3.2 Momentum Measurement and Momentum Probability 132

9.3.3 Average Values and Expectation Values 133

9.3.4 Operators and Expectation Values 136

9.3.5 Equations for Determining the Wavefunction 137

9.3.6 Simultaneous Observability and Commutation Relations 139

9.4.The Quantum Mechanical Oscillator 142

Problems 148

10. Quantum Mechanics of the Hydrogen Atom 153

10.1 Motion in a Central Field 153

10.2 Angular Momentum Eigenfunctions 155

10.3 The Radial Wavefunctions in a Central Field 161

10.4 The Radial Wavefunctions of Hydrogen 163

Problems 169

11. Lifting of the Orbital Degeneracy in the Spectra of Alkali Atoms 171

11.1 Shell Structure 171

11.2 Screening 173

11.3 The Term Diagram 174

11.4 Inner Shells 179

Problems 179

12. Orbital and Spin Magnetism. Fine Structure 181

12.1 Introduction and Overview 181

12.2 Magnetic Moment of the Orbital Motion 182

12.3 Precession and Orientation in a Magnetic Field 184

12.4 Spin and Magnetic Moment of the Electron 186

12.5 Determination of the Gyromagnetic Ratio by the Einstein-de Haas Method 188

12.6 Detection of Directional Quantisation by Stern and Gerlach 189

12.7 Fine Structure and Spin-Orbit Coupling: Overview 191

12.8 Calculation of Spin-Orbit Splitting in the Bohr Model 192

12.9 Level Scheme of the Alkali Atoms 196

12.10 Fine Structure in the Hydrogen Atom 197

12.11 The Lamb Shift 198

Problems 202

13. Atoms in a Magnetic Field:Experiments and Their Semiclassical Description 205

13.1 Directional Quantisation in a Magnetic Field 205

13.2 Electron Spin Resonance 205

13.3 The Zeeman Effect 208

13.3.1 Experiments 208

13.3.2 Explanation of the Zeeman Effect from the Standpoint of Classical Electron Theory 210

13.3.3 Description of the Ordinary Zeeman Effect by the Vector Model 212

13.3.4 The Anomalous Zeeman Effect 214

13.3.5 Magnetic Moments with Spin-Orbit Coupling 215

13.4 The Paschen-Back Effect 217

13.5 Double Resonance and Optical Pumping 218

Problems 220

14. Atoms in a Magnetic Field:Quantum Mechanical Treatment 223

14.1 Quantum Theory of the Ordinary Zeeman Effect 223

14.2 Quantum Theoretical Treatment of the Electron and Proton Spins 225

14.2.1 Spin as Angular Momentum 225

14.2.2 Spin Operators,Spin Matrices and Spin Wavefunctions 226

14.2.3 The Schr?dinger Equation of a Spin in a Magnetic Field 228

14.2.4 Description of Spin Precession by Expectation Values 230

14.3 Quantum Mechanical Treatment of the Anomalous Zeeman Effect with Spin-Orbit Coupling 232

14.4 Quantum Theory of a Spin in Mutually Perpendicular Magnetic Fields,One Constant and One Time Dependent 236

14.5 The Bloch Equations 241

14.6 The Relativistic Theory of the Electron. The Dirac Equation 243

Problems 249

15. Atoms in an Electric Field 251

15.1 Observations of the Stark Effect 251

15.2 Quantum Theory of the Linear and Quadratic Stark Effects 253

15.2.1 The Hamiltonian 253

15.2.2 The Quadratic Stark Effect.Perturbation Theory Without Degeneracy 254

15.2.3 The Linear Stark Effect.Perturbation Theory in the Presence of Degeneracy 257

15.3 The Interaction of a Two-Level Atom with a Coherent Radiation Field 260

15.4 Spin and Photon Echoes 263

15.5 A Glance at Quantum Electrodynamics 266

15.5.1 Field Quantization 266

15.5.2 Mass Renormalization and Lamb Shift 271

Problems 278

16. General Laws of Optical Transitions 281

16.1 Symmetries and Selection Rules 281

16.1.1 Optical Matrix Elements 281

16.1.2 Examples of the Symmetry Behaviour of Wavefunctions 281

16.1.3 Selection Rules 286

16.1.4 Selection Rules and Multipole Radiation 289

16.2 Linewidths and Lineshapes 292

17. Many-Electron Atoms 297

17.1 The Spectrum of the Helium Atom 297

17.2 Electron Repulsion and the Pauli Principle 299

17.3 Angular Momentum Coupling 300

17.3.1 Coupling Mechanism 300

17.3.2 LS Coupling(Russell-Saunders Coupling) 300

17.3.3 jj Coupling 304

17.4 Magnetic Moments of Many-Electron Atoms 306

17.5 Multiple Excitations 307

Problems 307

18. X-Ray Spectra,Internal Shells 309

18.1 Introducto Remarks 309

18.2 X-Radiation from Outer Shells 309

18.3 X-Ray Bremsstrahlung Spectra 310

18.4 Emission Line Spectra: Characteristic Radiation 312

18.5 Fine Structure of the X-Ray Spectra 314

18.6 Absorption Spectra 316

18.7 The Auger Effect 318

18.8 Photoelectron Spectroscopy(XPS),ESCA 320

Problems 322

19. Structure of the Periodic System.Ground States of the Elements 323

19.1 Periodic System and Shell Structure 323

19.2 From the Electron Configuration to the Atomic Term Scheme.Atomic Ground States 330

19.3 Excited States of Atoms and Possible Electronic Configurations.Complete Term Schemes 333

19.4 The Many-Electron Problem. Hartree-Fock Method 335

19.4.1 The Two-Electron Problem 335

19.4.2 Many Electrons Without Mutual Interactions 340

19.4.3 Coulomb Interaction of Electrons.Hartree and Hartree-Fock Methods 341

Problems 344

20. Nuclear Spin,Hyperfine Structure 347

20.1 Influence of the Atomic Nucleus on Atomic Spectra 347

20.2 Spins and Magnetic Moments of Atomic Nuclei 348

20.3 The Hyperfine Interaction 350

20.4 Hyperfine Structure in the Ground State of the Hydrogen Atom,the Sodium Atom,and the Hydrogen-like Ion 83Bi82﹢ 354

20.5 Hyperfine Structure in an External Magnetic Field,Electron Spin Resonance 356

20.6 Direct Measurements of Nuclear Spins and Magnetic Moments,Nuclear Magnetic Resonance 361

20.7 Applications of Nuclear Magnetic Resonance 364

20.8 The Nuclear Electric Quadrupole Moment 369

Problems 371

21. The Laser 373

21.1 Some Basic Concepts for the Laser 373

21.2 Rate Equations and Lasing Conditions 376

21.3 Amplitude and Phase of Laser Light 379

Problems 382

22. Modern Methods of Optical Spectroscopy 385

22.1 Classical Methods 385

22.2 Quantum Beats 386

22.3 Doppler-free Saturation Spectroscopy 388

22.4 Doppler-free Two-Photon Absorption 390

22.5 Level-Crossing Spectroscopy and the Hanle Effect 392

22.6 Laser Cooling of Atoms 394

22.7 Nondestructive Single-Photon Detection An Example of Atomic Physics in a Resonant Cavity 399

Problems 401

23. Progress in Quantum Physics:A Deeper Understanding and New Applications 403

23.1 Introduction 403

23.2 The Superposition Principle,Interference,Probabilily and Probability Amplitudes 403

23.3 Schr?dinger’s Cat 405

23.4 Decoherence 405

23.5 Entanglement 406

23.6 The Einstein-Podolsky-Rosen(EPR)Paradox 407

23.7 Bell’s Inequalities and the Hidden-Variable Hypothesis 408

23.8 Experiments to Test Bell’s Inequalities 411

23.9 Quantum Computers 412

23.9.1 Historical Remarks 412

23.9.2 Review of Digital Computers 413

23.9.3 Basic Concepts of the Quantum Computer 414

23.9.4 Decoherence and Error Correction 416

23.9.5 A Comparison Between the Quantum Computer and the Digital Computer 418

23.10 Quantum Information Theory 418

23.11 The Bose-Einstein Condensation 418

23.11.1 Review of Statistical Mechanics 418

23.11.2 The Experimental Discovery 419

23.11.3 The Quantum Theory of the Bose-Einstein Condensation 421

23.12 The Atom Laser 422

Problems 423

24. Fundamentals of the Quantum Theory of Chemical Bonding 425

24.1Introductory Remarks 425

24.2 The Hydrogen-Molecule Ion H﹢2 425

24.3 The Tunnel Effect 431

24.4 The Hydrogen Molecule H2 433

24.5Covalent-Ionic Resonance 440

24.6 The Hund-Mulliken-Bloch Theory of Bonding in Hydrogen 441

24.7Hybridisation 442

24.8 The π Electrons of Benzene,C6H6 444

Problems 446

Appendix 447

A. The Dirac Delta Function and the Normalisation of the Wavefunction of a Free Particle in Unbounded Space 447

B. Some Properties of the Hamiltonian Operator, Its Eigenfunctions and its Eigenvalues 451

C. Derivation of Heisenberg’s Uncertainty Relation 452

Solutions to the Problems 455

Bibliography of Supplementary and Specialised Literature 485

Subject Index 493

返回顶部