当前位置:首页 > 数理化
微积分及其应用  第2版
微积分及其应用  第2版

微积分及其应用 第2版PDF电子书下载

数理化

  • 电子书积分:15 积分如何计算积分?
  • 作 者:河北农业大学理学院编
  • 出 版 社:北京:高等教育出版社
  • 出版年份:2006
  • ISBN:7040186888
  • 页数:454 页
图书介绍:本书是教育部“高等教育面向21世纪教学内容和课程体系改革计划”的研究成果,是面向21世纪高等学校课程教材。
《微积分及其应用 第2版》目录

第一章 函数与极限 1

1.1 函数 1

一、函数概念及其几种特性 1

二、反函数 4

三、复合函数 5

四、基本初等函数、初等函数 7

五、函数关系的建立 10

习题1.1 13

1.2 函数的极限 15

一、数列的极限 15

二、函数的极限 19

三、无穷小与无穷大 23

习题1.2 24

1.3 函数极限的性质及运算法则 25

一、函数极限的性质 25

二、函数极限的运算法则 27

三、极限存在准则和两个重要极限 30

习题1.3 35

1.4 无穷小的比较 36

习题1.4 38

1.5 函数的连续性与间断点 38

一、函数的连续性 38

二、函数的间断点 40

习题1.5 42

1.6 连续函数的性质 43

一、连续函数的和、差、积、商的连续性 43

二、反函数与复合函数的连续性 43

三、初等函数的连续性 43

四、闭区间上连续函数的性质 47

习题1.6 48

第二章 导数与微分 50

2.1 导数的概念 50

一、变化率 50

二、导数的概念 51

三、导数的量纲 54

四、可导性与连续性的关系 55

五、可导性的图形意义 56

习题2.1 57

2.2 导数的运算法则 58

一、基本初等函数的导数 58

二、函数的和、差、积、商的导数 63

三、复合函数的导数 64

四、隐函数的导数 66

五、由参数方程所确定的函数的导数 69

习题2.2 71

2.3 函数的微分 73

一、微分的概念 73

二、微分的运算与微分形式的不变性 75

三、微分在近似计算中的应用 77

习题2.3 78

第三章 中值定理与导数的应用 79

3.1 中值定理 79

一、罗尔中值定理 79

二、拉格朗日中值定理 80

三、泰勒中值定理 83

四、柯西中值定理 85

习题3.1 86

3.2 洛必达法则 87

一、?型未定式 87

二、?型未定式 89

三、其他类型未定式 89

习题3.2 92

3.3 函数单调增减性及其判别法 92

习题3.3 95

3.4 函数的极值及其求法 95

一、极值的定义 95

二、极值存在的条件 96

习题3.4 98

3.5 最大值、最小值及其应用 99

习题3.5 102

3.6 曲线的凹凸性及拐点 102

一、曲线的凹凸性及拐点 102

二、曲率 104

习题3.6 106

3.7 函数作图 106

习题3.7 108

3.8 导数应用实例 108

一、变化率及相对变化率在经济中的应用 109

二、征税的学问 113

三、接受能力与讲授时间的关系 114

四、您的书写吊灯应该挂多高 115

五、鱼群的适度捕捞 115

习题3.8 116

第四章 积分 118

4.1 定积分概念 118

一、引例 118

二、定积分的概念 120

三、定积分的几何意义和物理意义 121

四、定积分的基本性质 122

习题4.1 125

4.2 微积分基本定理 126

一、微积分第一基本定理 126

二、原函数与不定积分 128

三、微积分第二基本定理 133

习题4.2 135

4.3 基本积分法 136

一、换元积分法 136

二、分部积分法 149

三、几种特殊类型函数的积分举例 153

习题4.3 157

4.4 反常积分 159

一、无穷区间上的反常积分 159

二、被积函数有无穷间断点的反常积分 161

三、Γ函数与β函数 162

习题4.4 165

4.5 定积分的应用 165

一、定积分的微元法 166

二、定积分的几何应用 166

三、定积分的物理应用 172

四、定积分的其他应用 173

习题4.5 176

第五章 空间解析几何与向量代数 178

5.1 空间直角坐标系 178

一、空间直角坐标系 178

二、空间两点间的距离 179

习题5.1 180

5.2 向量代数 180

一、向量的概念 180

二、向量的线性运算 181

三、向量的坐标表示 183

四、向量的模与方向余弦的坐标表示式 185

五、向量的标量积 186

六、向量的向量积 188

习题5.2 190

5.3 平面与空间直线 190

一、平面 190

二、空间直线 195

习题5.3 198

5.4 空间曲面与空间曲线 199

一、空间曲面 199

二、空间曲线 202

习题5.4 205

5.5 二次曲面 205

一、椭球面 205

二、抛物面 206

三、双曲面 208

四、二次锥面 208

习题5.5 209

第六章 多元函数微分法及其应用 210

6.1 多元函数的基本概念 210

一、区域 210

二、多元函数的定义 211

三、二元函数的极限与连续 214

习题6.1 217

6.2 偏导数与全微分 218

一、偏导数 218

二、全微分 223

习题6.2 227

6.3 多元复合函数与隐函数的求导法则 227

一、多元复合函数的求导法则 227

二、隐函数求导法则 233

习题6.3 236

6.4 偏导数的几何应用 237

一、空间曲线的切线与法平面 237

二、曲面的切平面与法线 238

习题6.4 240

6.5 最优化问题 240

一、极值的概念 240

二、极值存在的条件 241

三、最大值与最小值 243

四、最优化问题 244

五、最小二乘法及其应用 248

习题6.5 253

第七章 多元函数积分及其应用 255

7.1 二重积分的概念与性质 255

一、二重积分的概念 255

二、二重积分的性质 258

习题7.1 259

7.2 二重积分的计算 259

一、在直角坐标系下计算二重积分 260

二、在极坐标系下计算二重积分 266

习题7.2 270

7.3 二重积分的应用 272

一、立体的体积 272

二、曲面的面积 274

习题7.3 277

7.4 三重积分的概念及其计算 278

一、三重积分的概念 278

二、三重积分的计算 279

习题7.4 287

7.5 曲线积分 288

一、对弧长的曲线积分 288

二、对坐标的曲线积分 292

三、格林定理及其应用 299

习题7.5 303

第八章 微分方程与差分方程简介 305

8.1 微分方程的基本概念 305

一、引例 305

二、微分方程的基本概念 306

习题8.1 307

8.2 可分离变量的一阶微分方程 308

习题8.2 310

8.3 一阶线性微分方程 310

一、一阶线性齐次微分方程 311

二、一阶线性非齐次微分方程 311

三、伯努利微分方程 314

习题8.3 315

8.4 可降阶的高阶微分方程 315

一、y(n)=f(x)型的高阶微分方程 315

二、y"=f(x,y')型的微分方程 316

三、y"=f(y,y')型的微分方程 318

习题8.4 319

8.5 二阶常系数线性微分方程 320

一、通解的结构 320

二、二阶常系数线性齐次微分方程 321

三、二阶常系数线性非齐次微分方程 324

习题8.5 328

8.6 微分方程应用实例 328

一、嫌疑犯问题 328

二、含盐量问题 329

三、悬链线方程问题 330

习题8.6 332

8.7 差分方程简介 332

一、差分方程的基本概念 332

二、线性差分方程的基本定理 334

三、一阶线性差分方程 335

四、二阶线性差分方程 341

习题8.7 346

第九章 无穷级数 347

9.1 常数项级数的概念与性质 347

一、常数项级数的概念 347

二、无穷级数的基本性质 349

习题9.1 352

9.2 常数项级数敛散性的判别方法 353

一、正项级数及其敛散性的判别方法 353

二、交错级数及其敛散性的判别方法 359

三、绝对收敛与条件收敛 360

习题9.2 362

9.3 幂级数 363

一、函数项级数的一般概念 363

二、幂级数及其收敛域 364

三、幂级数的运算 368

四、函数展开成幂级数 370

五、幂级数在近似计算中的应用 374

习题9.3 377

第十章 数学建模初步及应用范例 379

10.1 建立数学模型的一般步骤 379

10.2 应用范例 381

一、不允许缺货的存贮问题 381

二、交通管理问题 382

三、铅球投掷问题 384

四、传染病的传播问题 387

习题10.2 391

单元自测题 393

一元函数微分学自测题 393

一元函数积分学自测题 394

多元函数微分学自测题 395

多元函数积分学自测题 396

常微分方程自测题 398

无穷级数自测题 398

附录Ⅰ 积分表 400

附录Ⅱ Maple简介 408

附录Ⅲ 二阶和三阶行列式简介 418

附录Ⅳ 常用的三角函数公式 421

附录Ⅴ 常用的极坐标和参数方程表示的曲线 422

习题答案 425

单元自测题答案 447

名词术语索引 450

参考文献 454

相关图书
作者其它书籍
返回顶部