当前位置:首页 > 数理化
高等数学  上
高等数学  上

高等数学 上PDF电子书下载

数理化

  • 电子书积分:14 积分如何计算积分?
  • 作 者:路见可,熊全淹编
  • 出 版 社:北京:人民教育出版社
  • 出版年份:1980
  • ISBN:13012·0439
  • 页数:442 页
图书介绍:
《高等数学 上》目录
标签:数学

第一篇 解析几何 1

第一章 行列式 1

1.1 行列式的定义 1

1.2 行列式的性质 8

1.3 一次方程组 12

第二章 平面解析几何 18

2.1 平面直角坐标 18

2.2 曲线及方程 27

2.3 曲线 37

2.4 圆 50

2.5 二次曲线的标准形式 55

2.6 坐标变换 67

2.7 一般二次方程 78

2.8 参数方程 83

2.9 极坐标 87

第三章 空间解析几何大意 97

3.1 空间直角坐标 97

3.2 平面 104

3.3 直线 111

3.4 几种主要曲面 118

3.5 二次曲面 127

第四章 向量代数 132

4.1 向量概念及其加减法 132

4.2 向量的坐标表示法 135

4.3 向量的数积 139

4.4 向量的向量积 142

1.1 绝对值·不等式 150

第二篇 数学分析 150

第一章 变量与函数 150

1.2 变量·区间 153

1.3 函数及其表示法 155

1.4 初等函数 163

第二章 极限与连续 174

2.1 数列及其极限 174

2.2 函数的极限 183

2.3 无穷小量的性质 193

2.4 极限的运算 198

2.5 极限存在的两个判别法·两个重要极限 208

2.6 无穷小的比较 216

2.7 连续函数 221

2.8 连续函数的性质 227

2.9 初等函数的连续性 231

第三章 导数与微分 238

3.1 函数的变率·导数概念 238

3.2 函数微分法的一般规则 250

3.3 初等函数的微分法 258

3.4 高阶导数 271

3.5 微分概念 275

第四章 微分学的应用 286

4.1 平面曲线的切线、法线与交角 286

4.2 弧的微分·曲率 290

4.3 中值定理 297

4.4 利用一阶导数研究函数的性质 303

4.5 利用二阶导数研究函数的性质 313

4.6 函数图形的作法 323

4.7 罗必达法则 328

4.8 方程的近似解法 336

第五章 不定积分 341

5.1 原函数·不定积分 341

5.2 不定积分的性质和基本积分公式 344

5.3 积分的基本法则之一--换元积分法 347

5.4 积分的基本法则之二--分部积分法 355

5.5 有理函数积分法 360

5.6 无理函数及超越函数积分法 369

5.7 积分法概述 378

第六章 定积分及其应有 383

6.1 定积分概念 383

6.2 定积分与不定积分的联系 390

6.3 定积分的性质 395

6.4 定积分计算中的两个法则 400

6.5 定积分的近似计算 408

6.6 广义积分 416

6.7 定积分的几何应用 424

6.8 定积分力学应用 437

相关图书
作者其它书籍
返回顶部