考研数学复习全书基础篇 数1PDF电子书下载
- 电子书积分:10 积分如何计算积分?
- 作 者:李永乐,王式安主编
- 出 版 社:北京:国家行政学院出版社
- 出版年份:2013
- ISBN:9787515008295
- 页数:250 页
第一篇 高等数学 1
第0章 预备知识 1
第一节 集合、不等式 1
一、集合 1
二、常见不等式 2
第二节 基本初等函数 3
一、常数函数 3
二、幂函数 3
三、指数函数 3
四、对数函数 4
五、三角函数 4
六、反三角函数 8
七、双曲函数与反双曲函数 10
第三节 极坐标系 12
一、建系 12
二、极坐标系与直角坐标系的互化 12
三、曲线的极坐标方程 12
四、常见的曲线极坐标方程 12
第一章 函数 极限 连续 14
第一节 函数 14
一、函数的定义 14
二、函数的表示法 15
三、具有某些特性的函数 15
第二节 极限 18
一、极限概念 18
二、运算法则 21
第三节 函数的连续与间断 23
一、连续性概念 23
二、间断点 23
三、闭区间上的连续函数的性质 24
第二章 一元函数微分学 26
第一节 导数与微分,导数的计算 26
一、导数与微分 26
二、基本求导法则与公式 28
第二节 导数的应用 32
一、单调性的判定 32
二、极值与最值 33
三、凹凸性与拐点 33
四、洛必达法则 34
五、渐近线的求法 37
六、曲率与曲率半径 38
第三节 中值定理、不等式与零点问题 38
一、中值定理 38
二、不等式的证明 40
三、零点问题 42
第三章 一元函数积分学 44
第一节 不定积分与定积分的概念、性质 44
一、原函数与不定积分 44
二、积分基本性质 45
第二节 不定积分与定积分的计算 49
一、基本积分公式 49
二、基本积分方法 49
第三节 反常积分及其计算 55
一、反常积分 55
二、对称区间上奇、偶函数的反常积分 56
第四节 定积分的应用 58
一、基本方法 58
二、重要几何公式与物理应用 58
第五节 定积分的综合题 61
第四章 向量代数与空间解析几何 63
第一节 向量 63
一、向量有关的基本概念 63
二、向量的运算及性质 63
第二节 平面与直线 66
一、平面方程 66
二、直线方程 66
三、平面与直线间的位置关系 66
第三节 空间曲面与曲线 68
一、旋转面及其方程 68
二、柱面及其方程 69
三、常见的二次曲面及图形 70
四、空间曲线及其方程 71
五、空间曲线的投影 71
第五章 多元函数微分学 72
第一节 多元函数的极限与连续 72
一、二元函数的概念 72
二、二元函数的极限与连续 72
第二节 多元函数的微分 75
一、二元函数的偏导数与全微分 75
二、复合函数的偏导数与全微分 77
三、隐函数的偏导数与全微分 78
第三节 极值与最值 80
一、无条件极值 80
二、条件极值 80
三、最值问题 81
第四节 方向导数、梯度及几何应用 82
一、方向导数 82
二、梯度 82
三、曲面的切平面与法线 82
四、曲线的切线和法平面 83
第六章 多元函数积分学 84
第一节 重积分 84
一、二重积分 84
二、三重积分 89
第二节 曲线积分 92
一、对弧长的线积分(第一类线积分) 92
二、对坐标的线积分(第二类线积分) 93
第三节 曲面积分 96
一、对面积的面积分(第一类面积分) 96
二、对坐标的面积分(第二类面积分) 97
第四节 场论初步 99
一、梯度 99
二、通量 100
三、散度 100
四、旋度 100
第五节 多元积分的应用 100
第七章 无穷级数 103
第一节 常数项级数 103
一、级数的概念与性质 103
二、正项级数的判敛准则 105
三、交错级数 105
三、绝对收敛及性质 106
四、几何级数与p级数及其敛散性 107
第二节 幂级数 107
一、函数项级数及收敛域与和函数 107
二、幂级数 108
三、幂级数的性质 108
四、函数的幂级数展开 109
第三节 傅里叶级数 110
一、三角函数及其正交性 110
二、傅里叶级数 111
三、收敛性定理 111
四、周期为2π的函数的傅里叶展开 111
五、周期为2l的函数的傅里叶展开 112
第八章 常微分方程 114
第一节 一阶微分方程 114
一、微分方程的概念 114
二、几种特殊类型的一阶微分方程及其解法 115
第二节 二阶及高阶线性微分方程 118
一、线性微分方程 118
二、线性微分方程解的性质 119
第三节 微分方程的应用 123
一、几何问题 123
二、变化率问题 124
第二篇 线性代数 126
第一章 行列式 126
一、n阶行列式的概念 126
二、行列式的性质 128
三、行列式按行(或列)展开公式 130
四、几个重要公式 132
第二章 矩阵 134
第一节 矩阵的概念及运算 134
一、矩阵的概念 134
二、矩阵的运算 135
三、常见的矩阵 136
四、矩阵的运算规则 136
第二节 可逆矩阵 138
一、可逆矩阵的概念 138
二、n阶矩阵A可逆的充分必要条件 138
三、逆矩阵的运算性质 138
四、求逆矩阵的方法 139
第三节 初等变换、初等矩阵 141
一、初等变换与初等矩阵的概念 141
二、初等矩阵与初等变换的性质 141
第四节 矩阵的秩 142
一、矩阵秩的概念 142
二、矩阵秩的公式 143
第五节 分块矩阵 143
一、分块矩阵的概念 143
二、分块矩阵的运算 144
第三章 向量 147
一、向量的概念 147
二、向量组的线性相关性 147
三、向量组的秩 149
四、向量空间 151
第四章 线性方程组 154
一、线性方程组的表达形式 154
二、齐次线性方程组的解 155
三、非齐次线性方程组的解 160
四、克拉默法则 161
第五章 特征值和特征向量 163
第一节 方阵的特征值和特征向量 163
第二节 矩阵的相似对角化 167
第三节 实对称矩阵的相似对角化 169
第六章 二次型 173
第一节 二次型的概念 173
第二节 正定二次型 179
第三篇 概率论与数理统计 183
第一章 随机事件和概率 183
第一节 随机事件、事件间的关系与运算 183
一、随机试验 183
二、随机事件 183
三、事件的关系与运算 184
第二节 概率及概率公式 186
一、概率公理 186
二、事件的独立性 187
三、五大概率公式 187
第三节 古典概型与伯努利概型 189
第二章 随机变量及其概率分布 192
第一节 随机变量及其分布函数 192
第二节 常用分布 196
第三节 随机变量函数的分布 199
第三章 多维随机变量及其分布 202
第一节 二维随机变量及其分布 202
一、二维随机变量 202
二、二维离散型随机变量 203
三、二维连续型随机变量 205
第二节 随机变量的独立性 206
第三节 二维均匀分布和二维正态分布 210
第四节 两个随机变量函数Z=g(X,Y)的分布 212
第四章 随机变量的数字特征 217
第一节 随机变量的数学期望和方差 217
第二节 矩、协方差和相关系数 221
第五章 大数定律和中极限定理 226
第六章 数理统计的基本概念 229
第一节 总体、样本、统计量和样本数字特征 229
第二节 常用统计抽样分布 232
一、x 2分布 232
二、t分布 233
三、F分布 234
四、正态总体的抽样分布 234
第七章 参数估计 237
第一节 点估计 237
第二节 估计量的求法和区间估计 240
一、矩估计法 240
二、最大似然估计法 241
三、区间估计 243
第八章 假设检验 246
一、假设检验 246
二、显著性检验 247
三、正态总体参数的假设检验 247
- 《MBA大师.2020年MBAMPAMPAcc管理类联考专用辅导教材 数学考点精讲》(中国)董璞 2019
- 《2013数学奥林匹克试题集锦 走向IMO》2013年IMO中国国家集训队教练组编 2013
- 《一个数学家的辩白》(英)哈代(G.H.Hardy)著;李文林,戴宗铎,高嵘译 2019
- 《高等数学试题与详解》西安电子科技大学高等数学教学团队 2019
- 《教育学考研应试宝典》徐影主编 2019
- 《数学物理方法与仿真 第3版》杨华军 2020
- 《2020老蒋绿皮书金榜题名系列 历年真题命题考点老蒋120句必背 考研英语 2》(中国)老蒋 2019
- 《考研英语命题人终极预测8套卷 英语一》朱伟主编 2019
- 《自我保健按摩全书 彩图典藏版》张威编著 2018
- 《2020考研英语大趋势 历年真题完形+翻译+新题型精讲精练》商志 2019
- 《国家社科基金项目申报规范 技巧与案例 第3版 2020》文传浩,夏宇编著 2019
- 《情报学 服务国家安全与发展的现代情报理论》赵冰峰著 2018
- 《指向核心素养 北京十一学校名师教学设计 英语 七年级 上 配人教版》周志英总主编 2019
- 《行政保留研究》门中敬著 2019
- 《北京生态环境保护》《北京环境保护丛书》编委会编著 2018
- 《21世纪法学系列教材 配套辅导用书 行政法与行政诉讼法练习题集 第5版》李元起主编 2018
- 《国家执业药师考试历年真题试卷全解 2015-2019 中药学专业知识 1》黄坤主编 2020
- 《复旦大学新闻学院教授学术丛书 新闻实务随想录》刘海贵 2019
- 《2019国家医师资格考试用书 中医执业助理医师资格考试全真模拟试卷与解析 第3版》国家医师资格考试研究组 2019
- 《指向核心素养 北京十一学校名师教学设计 英语 九年级 上 配人教版》周志英总主编 2019