高等数学 上 英文版PDF电子书下载
- 电子书积分:13 积分如何计算积分?
- 作 者:北京邮电大学高等数学双语教学组主编
- 出 版 社:北京:北京邮电大学出版社
- 出版年份:2011
- ISBN:9787563527328
- 页数:353 页
Chapter 0 Preliminary Knowledge 1
0.1 Polar Coordinate System 1
0.1.1 Plotting Points with Polar Coordinates 2
0.1.2 Converting between Polar and Cartesian Coordinates 2
0.2 Complex Numbers 6
0.2.1 The Definition of the Complex Number 6
0.2.2 The Complex Plane 7
0.2.3 Absolute Value,Conjugation and Distance 7
0.2.4 Polar Form of Complex Numbers 8
Chapter 1 Theoretical Basis of Calculus 9
1.1 Sets and Functions 9
1.1.1 Sets and Their Operations 10
1.1.2 Mappings and Functions 15
1.1.3 The Primary Properties of Functions 20
1.1.4 Composition of Functions 22
1.1.5 Elementary Functions and Hyperbolic Functions 23
1.1.6 Modeling Our Real World 26
Exercises 1.1 32
1.2 Limits of Sequences of Numbers 36
1.2.1 The Sequence 37
1.2.2 Convergence of A Sequence 38
1.2.3 Calculating Limits of Sequences 48
Exercises 1.2 52
1.3 Limits of Functions 55
1.3.1 Speed and Rates of Change 55
1.3.2 The Concept of Limit of A Function 59
1.3.3 Properties and Operation Rules of Functional Limits 63
1.3.4 Two Important Limits 66
Exercises 1.3 70
1.4 Infinitesimal and Infinite Quantities 72
1.4.1 Infinitesimal Quantities and their Order 72
1.4.2 Infinite Quantities 76
Exercises 1.4 77
1.5 Continuous Functions 78
1.5.1 Continuous Function and Discontinuous Points 79
1.5.2 Operations on Continuous Functions and the Continuity of Elementary Functions 83
1.5.3 Properties of Continuous Functions on a Closed Interval 87
Exercises 1.5 91
Chapter 2 Derivative and Differential 94
2.1 Concept of Derivatives 94
2.1.1 Introductory Examples 94
2.1.2 Definition of Derivatives 95
2.1.3 Geometric Interpretation of Derivative 98
2.1.4 Relationship between Derivability and Continuity 100
Exercises 2.1 102
2.2 Rules of Finding Derivatives 104
2.2.1 Derivation Rules of Rational Operations 104
2.2.2 Derivative of Inverse Functions 108
2.2.3 Derivation Rules of Composite Functions 109
2.2.4 Derivation Formulas of Fundamental Elementary Functions 113
Exercises 2.2 115
2.3 Higher-order Derivatives 117
Exercises 2.3 121
2.4 Derivation of Implicit Functions and Parametric Equations,Related Rates 122
2.4.1 Derivation of Implicit Functions 122
2.4.2 Derivation of Parametric Equations 125
2.4.3 Related Rates 128
Exercises 2.4 131
2.5 Differential of the Function 133
2.5.1 Concept of the Differential 133
2.5.2 Geometric Meaning of the Differential 135
2.5.3 Differential Rules of Elementary Functions 137
Exercises 2.5 139
2.6 Differential in Linear Approximate Computation 140
Exercises 2.6 141
Chapter 3 The Mean Value Theorem and Applications of Derivatives 143
3.1 The Mean Value Theorem 143
3.1.1 Rolle's Theorem 143
3.1.2 Lagrange's Theorem 146
3.1.3 Cauchy's Theorem 151
Exercises 3.1 152
3.2 L'Hospital's Rule 154
Exercises 3.2 162
3.3 Taylor's Theorem 163
3.3.1 Taylor's Theorem 163
3.3.2 Applications of Taylor's Theorem 169
Exercises 3.3 173
3.4 Monotonicity and Convexity of Functions 174
3.4.1 Monotonicity of Functions 174
3.4.2 Convexity of Functions,Inflections 176
Exercises 3.4 181
3.5 Local Extreme Values,Global Maxima and Minima 183
3.5.1 Local Extreme Values 183
3.5.2 Global Maxima and Minima 187
Exercises 3.5 192
3.6 Graphing Functions using Calculus 194
Exercises 3.6 197
Chapter 4 Indefinite Integrals 198
4.1 Concepts and Properties of Indefinite Integrals 198
4.1.1 Antiderivatives and Indefinite Integrals 198
4.1.2 Properties of Indefinite Integrals 199
Exercises 4.1 201
4.2 Integration by Substitution 202
4.2.1 Integration by the First Substitution 202
4.2.2 Integration by the Second Substitution 206
Exercises 4.2 210
4.3 Integration by Parts 213
Exercises 4.3 220
4.4 Integration of Rational Fractions 221
4.4.1 Integration of Rational Fractions 221
4.4.2 Antiderivatives Not Expressed by Elementary Functions 228
Exercises 4.4 228
Chapter 5 Definite Integrals 229
5.1 Concepts and Properties of Definite Integrals 229
5.1.1 Instances of Definite Integral Problems 229
5.1.2 The Definition of Definite Integral 232
5.1.3 Properties of Definite Integrals 234
Exercises 5.1 239
5.2 The Fundamental Theorems of Calculus 241
Exercises 5.2 246
5.3 Integration by Substitution and by Parts in Definite Integrals 249
5.3.1 Substitution in Definite Integrals 249
5.3.2 Integration by Parts in Definite Integrals 252
Exercises 5.3 254
5.4 Improper Integral 257
5.4.1 Integration on an Infinite Interval 257
5.4.2 Improper Integrals with Infinite Discontinuities 261
Exercises 5.4 265
5.5 Applications of Definite Integrals 266
5.5.1 Method of Setting up Elements of Integration 266
5.5.2 The Area of a Plane Region 268
5.5.3 The Arc Length of a Curve 271
5.5.4 The Volume of a Solid 275
5.5.5 Applications of Definite Integral in Physics 278
Exercises 5.5 282
Chapter 6 Infinite Series 288
6.1 Concepts and Properties of Series with Constant Terms 288
6.1.1 Examples of the Sum of an Infinite Sequence 288
6.1.2 Concepts of Series with Constant Terms 290
6.1.3 Properties of Series with Constant Terms 294
Exercises 6.1 297
6.2 Convergence Tests for Series with Constant Terms 299
6.2.1 Convergence Tests of Series with Positive Terms 299
6.2.2 Convergence Tests for Alternating Series 306
6.2.3 Absolute and Conditional Convergence 308
Exercises 6.2 311
6.3 Power Series 315
6.3.1 Functional Series 315
6.3.2 Power Series and Their Convergence 316
6.3.3 Operations of Power Series 321
Exercises 6.3 323
6.4 Expansion of Functions in Power Series 326
6.4.1 Taylor and Maclaurin Series 326
6.4.2 Expansion of Functions in Power Series 328
6.4.3 Applications of Power Series Expansion of Functions 332
Exercises 6.4 335
6.5 Fourier Series 336
6.5.1 Orthogonality of the System of Trigonometric Functions 337
6.5.2 Fourier Series 338
6.5.3 Convergence of Fourier Series 340
6.5.4 Sine and Cosine Series 344
Exercises 6.5 345
6.6 Fourier Series of Other Forms 347
6.6.1 Fourier Expansions of Periodic Functions with Period 2l 347
6.6.2 Complex form of Fourier Series 350
Exercises 6.6 352
Bibliography 353
- 《培智学校义务教育实验教科书教师教学用书 生活适应 二年级 上》人民教育出版社,课程教材研究所,特殊教育课程教材研究中心编著 2019
- 《MBA大师.2020年MBAMPAMPAcc管理类联考专用辅导教材 数学考点精讲》(中国)董璞 2019
- 《2013数学奥林匹克试题集锦 走向IMO》2013年IMO中国国家集训队教练组编 2013
- 《指向核心素养 北京十一学校名师教学设计 英语 七年级 上 配人教版》周志英总主编 2019
- 《一个数学家的辩白》(英)哈代(G.H.Hardy)著;李文林,戴宗铎,高嵘译 2019
- 《新课标背景下英语教学理论与教学活动研究》应丽君 2018
- 《高等数学试题与详解》西安电子科技大学高等数学教学团队 2019
- 《大学英语教学的跨文化交际视角研究与创新发展》许丽云,刘枫,尚利明著 2020
- 《中国少数民族唢呐教学曲选》胡美玲编 2019
- 《卓有成效的管理者 中英文双语版》(美)彼得·德鲁克许是祥译;那国毅审校 2019
- 《高等数学试题与详解》西安电子科技大学高等数学教学团队 2019
- 《北京生态环境保护》《北京环境保护丛书》编委会编著 2018
- 《上学就看 紧紧抓住梦想吧》北京少年儿童出版社 2015
- 《重庆市绿色建筑评价技术指南》重庆大学,重庆市建筑节能协会绿色建筑专业委员会主编 2018
- 《刘泽华全集 先秦政治思想史 下》刘泽华著;南开大学历史学院编 2019
- 《高等数学 上》东华大学应用数学系编 2019
- 《江苏中小企业生态环境评价报告》南京大学金陵学院企业生态研究中心 2019
- 《聋校义务教育实验教科书教师教学用书 数学 一年级 上》人民教育出版社,课程教材研究所,小学数学课程教材研究中心编著 2017
- 《AutoCAD机械设计实例精解 2019中文版》北京兆迪科技有限公司编著 2019
- 《国学 第6集》四川师范大学中华传统文化学院四川省人民政府文史研究馆 2018
- 《大学计算机实验指导及习题解答》曹成志,宋长龙 2019
- 《指向核心素养 北京十一学校名师教学设计 英语 七年级 上 配人教版》周志英总主编 2019
- 《大学生心理健康与人生发展》王琳责任编辑;(中国)肖宇 2019
- 《大学英语四级考试全真试题 标准模拟 四级》汪开虎主编 2012
- 《大学英语教学的跨文化交际视角研究与创新发展》许丽云,刘枫,尚利明著 2020
- 《北京生态环境保护》《北京环境保护丛书》编委会编著 2018
- 《复旦大学新闻学院教授学术丛书 新闻实务随想录》刘海贵 2019
- 《大学英语综合教程 1》王佃春,骆敏主编 2015
- 《大学物理简明教程 下 第2版》施卫主编 2020
- 《指向核心素养 北京十一学校名师教学设计 英语 九年级 上 配人教版》周志英总主编 2019