当前位置:首页 > 数理化
经典巴拿赫空间Ⅰ和Ⅱ  英文版
经典巴拿赫空间Ⅰ和Ⅱ  英文版

经典巴拿赫空间Ⅰ和Ⅱ 英文版PDF电子书下载

数理化

  • 电子书积分:14 积分如何计算积分?
  • 作 者:JoramLindenstrauss,LiorTzafriri著
  • 出 版 社:世界图书北京出版公司
  • 出版年份:2010
  • ISBN:9787510005251
  • 页数:448 页
图书介绍:本书是Springer数学经典教材之一。本书延续了该系列书的一贯风格,深入但不深沉。材料新颖,许多内容是同类书籍不具备的。对于学习Banach空间结构理论的学者来说,这是一本参考价值极高的书籍;对于学习该科目的读者,本书也是同等重要。
《经典巴拿赫空间Ⅰ和Ⅱ 英文版》目录

1.Sehauder Bases 1

a.Existence of Bases and Examples 1

b.Schauder Bases and Duality 7

c.Unconditional Bases 15

d.Examples of Spaces Without an Unconditional Basis 24

e.The Approximation Property 29

f.Biorthogonal Systems 42

g.Schauder Decompositions 47

2.The Spaces c0 and lp 53

a.Projections in c0 and lp and Characterizations of these Spaces 53

b.Absolutely Summing Operators and Uniqueness of Unconditional Bases 63

c.Fredholm Operators,Strictly Singular Operators and Complemented Subspaces of lp?lr 75

d.Subspaces of c0 and lp and the Approximation Property,Complement-ably Universal Spaces 84

e.Banach Spaces Containing lp or c0 95

f. Extension and Lifting Properties,Automorphisms of l∞,c0 and l1 104

3.Symmetric Bases 113

a.Properties of Symmetric Bases,Examples and Special Block Bases 113

b.Subspaces of Spaces with a Symmetric Basis 123

4.Orlicz Sequence Spaces 137

a.Subspaces of Orlicz Sequence Spaces which have a Symmetric Basis 137

b.Duality and Complemented Subspaces 147

c.Examples of Orlicz Sequence Spaces 156

d.Modular Sequence Spaces and Subspaces of lp?lr 166

e.Lorentz Sequence Spaces 175

References 180

Subject Index 185

返回顶部