数学的魅力 3PDF电子书下载
- 电子书积分:10 积分如何计算积分?
- 作 者:沈康身著
- 出 版 社:上海:上海辞书出版社
- 出版年份:2006
- ISBN:7532619974
- 页数:234 页
符号说明 1
一、拟柱体 1
前言 1
1.二次函数变截面立体 2
1.1 圆台和圆锥 2
1.2 球体及其部分 3
1.3 拟柱体 5
2.古世界拟柱体大观 8
2.1 中国 9
2.2 外国 15
习作与思考 22
参考文献 23
二、面积与拼补相等 25
1.1 出入相补、以盈补虚 26
1.2 鲍耶定理 26
1.面积相等的两多边形拼补相等 26
2.体积相等的两多面体拼补相等吗 30
2.1 问题的提出和发展 30
2.2 哈德威格定理 31
2.3 德恩定理的推导 32
3.图形的度量 34
3.1 平面图形的面积 34
3.2 空间图形的体积 35
3.3 历史上东、西方的体积论 36
习作与思考 43
参考文献 44
三、正多面体作法历史演进——这长长两千年的知识链 46
1.欧几里得 47
2.帕普斯 54
3.文艺复兴三杰 57
4.梅文鼎 59
习作与思考 61
参考文献 62
四、宇宙的和谐——正多面体互容的探讨 64
1.正多面体互容问题分析 65
1.1 引理 65
1.2 定理 67
2.正多面体互容问题探源 78
2.1 西方 78
2.2 中国 79
习作与思考 87
参考文献 87
五、阿基米德体——正多面体的拓广(上) 89
1.阿基米德体有十三种 89
1.1 阿基米德体构造法 90
1.2 阿基米德体研究探源 95
2.1 欧拉定理 97
2.阿基米德体只有十三种 97
2.2 阿基米德体只有十三种的证明 100
2.3 四种变体 103
3.阿基米德体中的几何参数 104
4.正多边形覆盖平面 105
5.多面体填满空间 108
5.1 正多面体填满空间 108
5.2 阿基米德体填满空间 108
习作与思考 109
5.3 正多面体和阿基米德体组合填满空间 109
参考文献 110
六、循环、对称、对偶——文学与数学联姻 112
1.文学中的回文、对句 112
1.1 文学中的回文 112
1.2 文学中的对句 113
2.数学中的循环、对称现象 116
2.1 循环小数 116
2.2 3n-1的怪圈 123
2.3 加法的回文现象 124
2.4 循环素数和回文素数 125
3.数学中的对偶现象 125
3.1 平面 126
3.2 空间 128
3.3 三角 131
习作与思考 131
参考文献 132
七、卡塔朗体——阿基米德体的对偶体 133
1.概述 133
1.1 简史 133
1.2 与阿基米德体的对偶关系 134
1.3 构造方法 135
2.Ai及其对偶体Ci(i=1,2,…,13) 142
2.1 (3.62),A1,C1 143
2.2 (3.4.3.4),A2,C2 145
2.3 (4.62),A3,C3 147
2.4 (3.82),A4,C4 149
2.5 (3.5.3.5),A5,C5 151
2.6 (5.62),A6,C6 153
2.7 (3.43),A7,C7 155
2.8 (34.4),A8,C8 157
2.9 (3.102),A9,C9 159
2.10 (3.4.5.4),A10,C10 160
2.11 (4.6.8),A11,C11 162
2.12 (34.5),A12,C12 164
2.13 (4.6.10),A13,C13 166
习作与思考 168
参考文献 169
八、靓丽的星体——正多面体的拓广(下) 170
1.星形和星体 170
1.1 星形构造法 170
1.2 星体构造法 171
2.开普勒-普安索星体 174
2.1 小星状正十二面体 176
2.2 大正十二面星体 177
2.3 大星状正十二面体 179
2.4 大正二十面星体 181
3.其他星体 184
3.1 梅文鼎-孔林宗星体 184
3.2 立方体、正八面体相交的星体 185
3.3 正二十面体与正十二面体相交的星体 185
3.4 大星状正二十面体 185
习作与思考 186
参考文献 187
九、蜜蜂的智慧——一个数学极值问题 188
1.平面问题 188
2.空间问题 190
2.1 麦克劳林 191
2.2 尖顶正六棱柱与卡塔朗体C2 194
2.3 各显身手 196
2.4 华罗庚 202
习作与思考 204
参考文献 205
十、“缘幂势既同,则积不容异”——中西大师论球积、积分学之始 207
1.牟合方盖 207
1.1 问题的提出 208
1.2 牟合方盖的几何性质 210
1.3 祖暅《九章·少广》注 213
1.4 牟合方盖研究在国外 217
2.球 222
2.1 中西数学大师论球积 222
2.2 形形色色的求球体积的辅助体 230
习作与思考 232
参考文献 233
- 《MBA大师.2020年MBAMPAMPAcc管理类联考专用辅导教材 数学考点精讲》(中国)董璞 2019
- 《2013数学奥林匹克试题集锦 走向IMO》2013年IMO中国国家集训队教练组编 2013
- 《一个数学家的辩白》(英)哈代(G.H.Hardy)著;李文林,戴宗铎,高嵘译 2019
- 《高等数学试题与详解》西安电子科技大学高等数学教学团队 2019
- 《数学物理方法与仿真 第3版》杨华军 2020
- 《高等数学 上》东华大学应用数学系编 2019
- 《聋校义务教育实验教科书教师教学用书 数学 一年级 上》人民教育出版社,课程教材研究所,小学数学课程教材研究中心编著 2017
- 《离散数学》(中国)杨文国,高华,石莹 2019
- 《指向核心素养 北京十一学校名师教学设计 数学 九年级 上 配人教版》周志英总主编 2019
- 《2018考研数学 数学 1 15年真题详解及解题技巧》本书编委会著 2017
- 《汉宫二十八朝演义 上》徐哲身著 1998
- 《汉宫二十八朝演义 下》徐哲身著 1987
- 《汉朝宫廷秘史 上》徐哲身著 2006
- 《比比看 时装豫剧》杨兰春,赵籍身著 1958
- 《汉朝宫廷秘史 下》徐哲身著 2006
- 《建筑漫记》袁镜身著 1991
- 《中算导论》沈康身著 1986
- 《建筑美学的特色与未来》袁镜身著 1992
- 《中医临证录》高省身著 1996
- 《算算列列》刘守身著 1980
- 《孙中山在上海》王琪森著 2019
- 《上海繁华》大地风车著 2019
- 《知青老照片 上海知青在黑龙江》马琳,刘宏海主编 2018
- 《朱生豪在上海》朱尚刚著 2019
- 《上海地情普及系列丛书 海韵江南古名镇》(中国)上海市地方志办公室,田兆元 2019
- 《上海图书馆藏古琴文献珍萃 稿钞校本 第2册》周德明,严晓星主编 2017
- 《上海图书馆藏古琴文献珍萃 稿钞校本 第6册》周德明,严晓星主编 2017
- 《上海图书馆藏古琴文献珍萃 稿钞校本 第3册》周德明,严晓星主编 2017
- 《上海图书馆藏古琴文献珍萃 稿钞校本 第1册》周德明,严晓星主编 2017
- 《上海市订购外国和港台科技期刊联合目录 1983 上》上海科学技术情报研究所 1983