当前位置:首页 > 数理化
抽象代数学
抽象代数学

抽象代数学PDF电子书下载

数理化

  • 电子书积分:10 积分如何计算积分?
  • 作 者:姚慕生编著
  • 出 版 社:上海:复旦大学出版社
  • 出版年份:2005
  • ISBN:7309020960
  • 页数:205 页
图书介绍:内容提要 本书系统地介绍了抽象代数最基本的内容,其中包括群论、环论与 域论。在域论这一章中还比较全面地介绍了有限Galois理论。书中配 备了一定数量、难易不一的习题,习题均有解答或提示。 本书可供综合性大学、师范大学数学系学生阅读,也可供理科各系 以及通讯工程的大学生、研究生及教师参考。
《抽象代数学》目录

第一章 预备知识 1

§1.1 集合 1

§1.2 Ca rtesian积 3

§1.3 等价关系与商集 4

§1.4 映射 6

§1.5 二元运算 8

§1.6 偏序与Zorn引理 9

第二章 群论 12

§2.1 群的概念 12

§2.2 子群及傍集 16

§2.3 正规子群与商群 21

§2.4 同态与同构 26

§2.5 循环群 32

§2.6 置换群 37

§2.7 群对集合的作用 43

§2.8 Sylow定理 48

§2.9 群的直积 53

§2.10 有限生成Abel群 59

§2.11 正规群列与可解群 66

§2.12 低阶有限群 71

第三章 环论 78

§3.1 基本概念 78

§3.2 子环、理想与商环 85

§3.3 环的同态 90

§3.4 整环、分式域 94

§3.5 唯一分解环 99

§3.6 PID与欧氏整区 103

§3.7 域上的一元多项式环 106

§3.8 交换环上的多项式环 111

§3.9 素理想 115

§3.10 模 118

第四章 域与Galois理论 125

§4.1 域的扩张 125

§4.2 代数扩域 129

§4.3 尺规作图问题 132

§4.4 分裂域 136

§4.5 可分扩域 143

§4.6 正规扩域 148

§4.7 Galois扩域与Galois对应 151

§4.8 有限域 159

§4.9 分圆域 160

§4.10 一元方程式的根式求解 165

§4.11 正规基定理 171

§4.12 域的超越扩张 174

附录Ⅰ 自由群 179

附录Ⅱ 代数闭域 182

附录Ⅲ 习题简答 184

参考文献 205

相关图书
作者其它书籍
返回顶部