固体物理学 英文影印版PDF电子书下载
- 电子书积分:23 积分如何计算积分?
- 作 者:(希)艾克拿默(Eleftherios N.Economou)著
- 出 版 社:世界图书出版公司北京公司
- 出版年份:2014
- ISBN:7510077876
- 页数:865 页
Part Ⅰ An Overview 3
1 Basic Principles Summarized 3
1.1 The Atomic Idea:From Elementary Particles to Solids 4
1.2 Permanent(i.e.,Equilibrium)Structures of Matter Correspond to the Minimum of Their(Free)Energy 6
1.3 Condensed Matter Tends to Collapse Under the Influence of Coulomb Potential Energy 9
1.4 Quantum Kinetic Energy Counterbalances Coulomb Potential Energy Leading to Stable Equilibrium Structures 10
1.4.1 Heisenberg's Uncertainty Principle and the Minimum Kinetic Energy 10
1.4.2 Pauli's Exclusion Principle and the Enhancement of the Minimum Kinetic Energy 11
1.4.3 Schr?dinger's Spectral Discreteness and the Rigidity of the Ground State 14
1.5 Dimensional Analysis 15
1.6 Key Points 18
1.7 Questions and Problems 19
2 Basic Principles in Action 21
2.1 Size and Energy Scale of Atoms 21
2.2 Why do Atoms Come Together to Form Molecules and Solids? 23
2.3 Ionic Motion:Small Oscillations 27
2.4 Why do the Specific Heats of Solids go to Zero as T→0K? 29
2.5 When is Classical Mechanics Adequate? 31
2.6 Estimating Magnitudes Through Dimensional Analysis 32
2.6.1 Atomic Radius,Rα 32
2.6.2 Volume per Atom,νa≡V/Na,in Solids 32
2.6.3 Mass Density,ρM 33
2.6.4 Cohesive Energy,Uc 33
2.6.5 Bulk Modulus,B,and Shear Modulus,μs 34
2.6.6 Sound Velocities in Solids,c0,cl,ct 35
2.6.7 Maximum Angular Frequency of Atomic Vibrations in Solids,ωmax 37
2.6.8 Melting Temperature,Tm 37
2.6.9 DC Electrical Resistivity,ρe 38
2.7 Key Points 41
2.8 Questions and Problems 42
3 A First Acquaintance with Condensed Matter 47
3.1 Various Kinds of Condensed Matter 47
3.1.1 Monocrystalline and Polycrystalline Atomic Solids 48
3.1.2 Atomic or Ionic Compounds and Alloys 49
3.1.3 Molecular Solids 49
3.1.4 Glasses 49
3.1.5 Polymers 50
3.1.6 Colloids 50
3.1.7 Gels 51
3.1.8 Liquid Crystals 51
3.1.9 Self-Assembled Soft Matter 51
3.1.1 0Artificial Structures 52
3.1.1 1Clusters and Other Finite Systems 52
3.2 Bonding Types and Resulting Properties 53
3.2.1 Simple Metals 54
3.2.2 Transition Metals and Rare Earths 55
3.2.3 Covalent Solids 55
3.2.4 Ionic Solids 56
3.2.5 Van der Waals Bonded Solids 57
3.2.6 Hydrogen Bonded Solids 58
3.3 A Short Introduction to Crystal Structures 59
3.3.1 Some Basic Definitions 59
3.3.2 Unit and Primitive Cells of Some Commonly Occurring 3-D Crystal Structures 64
3.3.3 Systems and Types of 3D Bravais Lattices 67
3.3.4 Crystal Planes and Miller Indices 67
3.4 Bloch Theorem,Reciprocal Lattice,Bragg Planes,and Brillouin Zones 70
3.4.1 Bloch Theorem 70
3.4.2 Reciprocal Lattice 72
3.4.3 Bragg Planes 75
3.4.4 Brillouin Zones 75
3.5 Key Points 77
3.6 Questions and Problems 78
Part Ⅱ Two Simple Models for Solids 83
4 The Jellium Model and Metals Ⅰ:Equilibrium Properties 83
4.1 Introduction 84
4.2 Electronic Eigenfunctions,Eigenenergies,Number of States 86
4.3 Kinetic and Potential Energy,Pressures,and Elastic Moduli 90
4.4 Acoustic Waves are the Ionic Eigenoscillations in the JM 97
4.5 Thermodynamic Quantities 101
4.5.1 General Formulas 101
4.5.2 Specific Heat,CV 104
4.5.3 Bulk Thermal Expansion Coefficient 107
4.6 Key Points 107
4.7 Problems 108
5 The Jellium Model and Metals Ⅱ:Response to External Perturbations 113
5.1 Response to Electric Field 113
5.2 The Dielectric Function 114
5.3 Static Electrical Conductivity 120
5.4 Phonon Contribution to Resistivity 123
5.5 Response in the Presence of a Static Uniform Magnetic Field 127
5.5.1 Magnetic Resonances 128
5.5.2 Hall Effect and Magnetoresistance 131
5.5.3 Magnetic Susceptibility,χm 133
5.6 Thermoelectric Response 140
5.7 Key Points 143
5.8 Problems 145
6 Solids as Supergiant Molecules:LCAO 149
6.1 Diversion:The Coupled Pendulums Model 149
6.2 Introductory Remarks Regarding the LCAO Method 152
6.3 A Single Band One-Dimensional Elemental“Metal” 153
6.4 One-Dimensional Ionic“Solid” 157
6.5 One-Dimensional Molecular“Solid” 160
6.6 Diversion:Eigenoscillations in One-Dimensional“solid”with two Atoms Per Primitive Cell 163
6.7 One-Dimensional Elemental sp1“Semiconductor” 164
6.8 One-Dimensional Compound sp1“Semiconductor” 171
6.9 Key Points 174
6.1 0Problems 174
7 Semiconductors and Other Tetravalent Solids 177
7.1 Lattice Structures:A Reminder 177
7.2 Band Edges and Gap 178
7.3 Differences Between the l-D and the 3-D Case and Energy Diagrams 181
7.4 Metals,Semiconductors,and Ionic Insulators 183
7.5 Holes 184
7.6 Effective Masses and DOS 186
7.7 Dielectric Function and Optical Absorption 188
7.8 Effective Hamiltonian 189
7.9 Impurity Levels 191
7.9.1 Impurity Levels:The General Picture 191
7.9.2 Impurity Levels:Doping 192
7.10 Concentration of Electrons and Holes at Temperature T 195
7.10.1 Intrinsic case 197
7.10.2 Extrinsic case 197
7.11 Band Structure and Electronic DOS 198
7.12 Eigenfrequencies,Phononic DOS,and Dielectric Function 200
7.13 Key Points 207
7.14 Problems 208
8 Beyond the Jellium and the LCAO:An Outline 211
8.1 Introductory Remarks 211
8.2 The Four Basic Approximations 212
8.3 Density Functional Theory 215
8.4 Outline of an Advanced Scheme for Calculating the Properties of Solids 219
8.5 Beyond the Four Basic Approximations 221
8.5.1 Periodicity Broken or Absent 223
8.5.2 Electron-Electron Correlations,Quasi-Particles,Magnetic Phases,and Superconductivity 235
8.5.3 Electron-Phonon Interactions,Transport Properties,Superconductivity,and Polarons 237
8.5.4 Phonon-Phonon Interactions,Thermal Expansion,Melting,Structural Phase Transitions,Solitons,Breathers 238
8.5.5 Disorder and Many Body Effects in Coexistence 239
8.5.6 Quantum Informatics and Solid State Systems 240
8.6 Key Points 240
8.7 Problems 241
Part Ⅲ More About Periodicity&its Consequences 245
9 Crystal Structure and Ionic Vibrations 245
9.1 Experimental Determination of Crystal Structures 245
9.2 Determination of the Frequency vs.Wavevector 251
9.3 Theoretical Calculation of the Phonon Dispersion Relation 256
9.4 The Debye-Waller Factor and the Inelastic Cross-Section 263
9.5 Key Points 268
9.6 Problems 269
10 Electrons in Periodic Media.The Role of Magnetic Field 273
10.1 Introduction 273
10.2 Dispersion Relations,Surfaces of Constant Energy,and DOS:A Reminder 274
10.3 Effective Hamiltonian and Semiclassical Approximation 276
10.4 Semiclassical Trajectories in the Presence of a Magnetic Field 280
10.5 Two Simple but Elucidating TB Models 281
10.6 Cyclotron Resonance and the de Haas-van Alphen Effect 287
10.7 Hall Effect and Magnetoresistance 290
10.8 Key Points 298
10.9 Problems 299
11 Methods for Calculating the Band Structure 301
11.1 Introductory Remarks 301
11.2 Ionic and Total Pseudopotentials 303
11.3 Schr?dinger Equation,Plane Wave Expansion,and Bloch's Theorem 309
11.4 Plane Waves and Perturbation Theory 310
11.5 Muffin-Tin Potential 313
11.6 Schr?dinger Equation and the Augmented Plane Wave(APW)Method 313
11.7 Schr?dinger Equation and the Korringa-Kohn-Rostoker(KKR) Method 315
11.8 The κ·p Method of Band Structure Calculations 317
11.9 Key Points 321
11.1 0Problems 322
12 Pseudopotentials in Action 325
12.1 The One-Dimensional Case 325
12.2 The Two-Dimensional Square Lattice 327
12.2.1 Spaghetti Diagrams 327
12.2.2 Fermi Lines 330
12.3 Harrison's Construction 336
12.4 Second-Order Correction to the Total JM Energy 337
12.5 Ionic Interactions in Real Space 338
12.6 Phononic Dispersions in Metals 340
12.7 Scattering by Phonons,Mean Free Path,and the Dimensionless Constant λ in Metals 342
12.8 Key Points 345
12.9 Problems 346
Part Ⅳ Materials 351
13 Simple Metals and Semiconductors Revisited 351
13.1 Band Structure and Fermi Surfaces of Simple Metals 351
13.1.1 Alkali Metals 351
13.1.2 Alkaline Earths:Be,Mg,Ca,Sr,Ba,and Ra 354
13.1.3 Trivalent Metals 354
13.1.4 Tetravalent Metals 358
13.2 Band Structure of Semiconductors 360
13.3 The Jones Zone and the Disappearance of the Fermi Surface 363
13.4 Mechanical Properties of Semiconductors 365
13.5 Magnetic Susceptibility of Semiconductors 368
13.6 Optical and Transport Properties of Semiconductors 371
13.6.1 Excitons 371
13.6.2 Conductivity and Mobility in Semiconductors 374
13.7 Silicon Dioxide(SiO2) 378
13.8 Graphite and Graphene 380
13.9 Organic semiconductors 386
13.10 Key Points 388
13.11 Questions and Problems 389
14 Closed-Shell Solids 393
14.1 Van Der Waals Solids 393
14.2 Ionic Compounds Ⅰ:Types and Crystal Structures 397
14.3 Ionic Compounds Ⅱ:Mechanical Properties 399
14.4 Ionic Compounds Ⅲ:Optical Properties 401
14.5 Key Points 406
14.6 Problems 407
15 Transition Metals and Compounds 409
15.1 Experimental Data for the Transition Metals 409
15.2 Calculations Ⅰ:APW or KKR 412
15.3 Calculations Ⅱ:LCAO 417
15.4 Calculations Ⅲ:The Simple Friedel Model 421
15.5 Compounds of Transition Elements,Ⅰ:Perovskites 423
15.6 Compounds of Transition Elements,Ⅱ:High Tc Superconducting Materials 426
15.7 Compounds of Transition Metals,Ⅲ:Oxides,etc 430
15.8 Key Points 434
15.9 Problems 435
16 Artificial Periodic Structures 437
16.1 Semiconductor Superlattices 437
16.2 Photonic Crystals:An Overview 439
16.3 Photonic Crystals:Theoretical Considerations 443
16.4 Phononic Crystals 450
16.5 Left-Handed Metamaterials(LHMs) 456
16.6 Designing,Fabricating,and Measuring LHMs 461
16.7 Key Points 466
16.8 Problems 468
Part Ⅴ Deviations from Periodicity 471
17 Surfaces and Interfaces 471
17.1 Surface Preparation 471
17.2 Relaxation and Reconstruction 472
17.3 Surface States 474
17.4 Work Function 479
17.5 Measuring the Work Function 481
17.6 The p-n Homojunction in Equilibrium 483
17.7 The p-n Homojunction Under an External Voltage V 487
17.8 Some Applications of Interfaces 491
17.9 Key Points 494
17.10 Problems 497
18 Disordered and Other Nonperiodic Solids 499
18.1 Introductory Remarks 499
18.2 Alloys and the Hume-Rothery Rule 500
18.3 Glasses and other Amorphous Systems 502
18.4 Distribution and Correlation Functions 504
18.5 Quasi-Crystals 506
18.6 Electron Transport and Quantum Interference 510
18.7 Band Structure,Static Disorder,and Localization 513
18.7.1 3D Case 513
18.7.2 2D Case 517
18.7.3 1D and quasi 1D Systems 518
18.8 Calculation Techniques 522
18.8.1 Coherent Potential Approximation 522
18.8.2 Weak Localization due to Quantum Interference 526
18.8.3 Scaling Approach 529
18.8.4 Quasi-One-Dimensional Systems and Scaling 532
18.8.5 Potential Well Analogy 533
18.9 Quantum Hall Effect 534
18.10 Key Points 538
18.11 Problems 540
19 Finite Systems 543
19.1 Introduction 543
19.2 Metallic Clusters 544
19.3 Fullerenes 545
19.4 C60-Based Solids 549
19.5 Carbon Nanotubes 551
19.6 Other Clusters 556
19.7 Quantum Dots 557
19.7.1 An Overview 557
19.7.2 Optical Transitions 558
19.7.3 QDs and Coulomb Blockade 561
19.8 Key Points 564
19.9 Problems 565
Part Ⅵ Correlated Systems 569
20 Magnetic Materials,Ⅰ:Phenomenology 569
20.1 Which Property Characterizes These Materials? 569
20.2 Experimental Data for Ferromagnets 573
20.2.1 Saturation Magnetization vs Temperature for Simple Ferromagnets 573
20.2.2 Magnetic Susceptibility of Simple Ferromagnet for T>Tc 573
20.2.3 Saturation Magnetization vs Temperature for Ferrimagnets 574
20.2.4 Magnetic Susceptibility of Ferrimagnets vs Temperature(T>Tc) 575
20.3 Experimental Data for Antiferromagnets 576
20.3.1 Determination of the Antiferromagnetic Ordered Structure 576
20.3.2 Magnetic Susceptibility vs Temperature 577
20.4 Materials 577
20.4.1 Simple Ferromagnetic Materials 577
20.4.2 Ferrimagnetic Materials 579
20.4.3 Antiferromagnetic Materials 580
20.5 Thermodynamic Relations 580
20.5.1 Thermodynamic Potentials 580
20.5.2 Mean Field Approximation(Landau's Approach) 583
20.5.3 Why are Magnetic Domains Formed? 584
20.5.4 How Thick is the Bloch Wall? 586
20.5.5 Examples of Magnetic Domains 586
20.5.6 Thermodynamics of Antiferromagnets 587
20.6 Spintronics 588
20.7 Key Points 592
20.8 Problems 593
21 Magnetic Materials Ⅱ:Microscopic View 595
21.1 Introduction 595
21.2 Jellium model and el-el Coulomb Repulsion 599
21.2.1 Is There Ferromagnetic Order in the JM? 599
21.2.2 Magnetic Susceptibility Within the JM in the Presence of Electron-Electron Interactions 601
21.2.3 Is There Antiferromagnetic Order in the JM? 603
21.3 The Hubbard Model 607
21.4 The Heisenberg Model 613
21.4.1 The Hamiltonian 613
21.4.2 Mean Field Approximation 615
21.4.3 The Ferromagnetic Case,(Jij>0)and its spin waves 617
21.4.4 The AF Case 619
21.5 Key Points 622
21.6 Problems 624
22 Superconductivity,Ⅰ:Phenomenology 625
22.1 Materials 625
22.2 Properties of Superconductors 627
22.2.1 Zero DC Resistivity 627
22.2.2 Expulsion of the Magnetic Field B from the Interior of a Superconductor 627
22.2.3 Critical Value of the Magnetic Field Beyond Which Superconductivity Disappears 629
22.2.4 Specific Heat and Other Thermodynamic Quantities 632
22.2.5 Response to Microwave or Far Infrared EM Radiation 634
22.2.6 Ultrasound Attenuation 635
22.2.7 Tunneling Current in Metal/Insulator/Superconductor Junctions 635
22.2.8 Temperature Dependence of the Superconducting Gap 635
22.2.9 Isotope Effect 637
22.2.10 Relaxation Times for Nuclear Spin 638
22.2.11 Thermoelectric Coefficients 638
22.3 Thermodynamic Relations 639
22.4 London Equation 641
22.5 Pippard's Generalization 644
22.6 Ginzburg-Landau Theory 645
22.7 Quantization of the Magnetic Flux 651
22.8 Key Points 652
22.9 Problems 654
23 Superconductivity,Ⅱ:Microscopic Theory 655
23.1 Electron-Electron Indirect Attraction 655
23.2 Cooper Pairs 657
23.3 Comments 659
23.4 Corrected Binding Energy and the Critical Temperature 661
23.5 Further Corrections to the Formula for Tc 663
23.6 The Bardeen-Cooper-Schrieffer(BCS)Theory 664
23.7 Thermodynamic Quantities 669
23.8 Response to Electromagnetic Fields 672
23.9 Towards Material-Specific Calculations of Superconducting Quantities 674
23.10 Josephson Effects and SQUID 677
23.11 Key Points 680
23.12 Problems 682
Part Ⅶ Appendices 685
A Elements of Electrodynamics of Continuous Media 685
A.1 Field Vectors,Potentials,and Maxwell's Equations 685
A.2 Relations Among the Fields 688
B Elements of Quantum Mechanics 697
B.1 General Formalism 697
B.2 Bra and Ket Notation 700
B.3 Spherically Symmetric Potentials 702
B.4 Perturbation Results 708
B.5 Interaction of Matter with an External Electromagnetic Field 711
C Elements of Thermodynamics and Statistical Mechanics 713
C.1 Thermodynamic Relations 713
C.2 Basic Relations of Statistical Mechanics 716
C.3 Non-Interacting Particles 718
C.3.1 Non-Interacting Electrons 718
C.3.2 Phonons 721
D Dielectric Function,ε(κ,ω):Formulas and Uses 723
D.1 Uses 724
D.2 Expressions for ε(κ,ω)within the JM 728
D.3 Phenomenological Expressions for the Dielectric Function 730
E Waves in Continuous Elastic Media 733
E.1 Strains 733
E.2 Equations of Motion 733
E.3 Connecting Stress and Strain 734
E.4 The Elastic Wave Equation 735
F The Method LCAO Applied to Molecules 737
F.1 Formulation of the LCAO Method 737
F.2 Some Important Examples 740
F.2.1 Covalent Diatomic Molecule 740
F.2.2 Ionic Diatomic Molecule 742
F.3 Hybridization of Atomic Orbitals 743
F.3.1 sp1 Hybrid Atomic Orbitals 744
F.3.2 sp2 Hybrid Atomic Orbitals 748
F.3.3 sp3 Hybrid Atomic Orbitals 749
G Boltzmann's Equation 755
H Tables 759
Solutions of Selected Problems and Answers 779
General Reading 826
References 837
Index 849
- 《液固旋流分离新技术》中国化工学会组织编写;汪华林等著 2019
- 《新编高中物理竞赛教程习题全解》钟小平主编;钟小平,倪国富,曹海奇编写 2019
- 《数学物理方法与仿真 第3版》杨华军 2020
- 《中学物理奥赛辅导:热学 光学 近代物理学》崔宏滨 2012
- 《长江口物理、化学与生态环境调查图集》于非 2019
- 《大学物理简明教程 下 第2版》施卫主编 2020
- 《慢性呼吸系统疾病物理治疗工作手册》(荷)瑞克·考斯林克(RikGosselink) 2020
- 《医学物理学》洪洋 2020
- 《初中物理知识地图》赵端旭 2017
- 《教师教育系列教材 心理学原理与应用 第2版 视频版》郑红,倪嘉波,刘亨荣编;陈冬梅责编 2020
- 《希利尔讲雕塑》(美)维吉尔·莫里斯·希利尔(Virgil Mores Hillyer)著 2019
- 《我的牧羊日记》(瑞典)艾克瑟·林登著 2019
- 《三个世界的西班牙人》(西)胡安·拉蒙·希梅内斯 2018
- 《烘焙工坊》(希)阿萨纳西奥斯·措克斯(Athanasios Tzokas)编 2019
- 《孩子需要家庭仪式感》(德)梅兰妮·葛列瑟,(德)艾克·霍佛曼 2020
- 《软件工程综合实践案例》岳希主编 2019
- 《世界名著名译文库 歌德谈话录 全译本》艾克曼 2016
- 《精通POSTGRESQL 11 第2版》(奥)汉斯·尤尔根·舍尔希著 2020
- 《法国大革命=DIE FRANZ?SISCHE REVOLUTION》(德)汉斯-乌尔里希·塔默(Hans-Ulrich Thamer)著 2019
- 《机器人诞生记》(英)希普顿(Shipton 北京
- 《TED说话的力量 世界优秀演讲者的口才秘诀》(坦桑)阿卡什·P.卡里亚著 2019
- 《小手画出大世界 恐龙世界》登亚编绘 2008
- 《近代世界史文献丛编 19》王强主编 2017
- 《课堂上听不到的历史传奇 世界政治军事名人 初中版》顾跃忠等编著 2015
- 《指向核心素养 北京十一学校名师教学设计 英语 七年级 上 配人教版》周志英总主编 2019
- 《365奇趣英语乐园 世界民间故事》爱思得图书国际企业 2018
- 《近代世界史文献丛编 36》王强主编 2017
- 《北京生态环境保护》《北京环境保护丛书》编委会编著 2018
- 《近代世界史文献丛编 11》王强主编 2017
- 《近代世界史文献丛编 18》王强主编 2017