计算物理 英文版·第2版PDF电子书下载
- 电子书积分:16 积分如何计算积分?
- 作 者:乔达诺,纳卡尼什著
- 出 版 社:北京:清华大学出版社
- 出版年份:2007
- ISBN:7302165726
- 页数:544 页
1 A First Numerical Problem 1
1.1 Radioactive Decay 1
1.2 A Numerical Approach 2
1.3 Design and Construction of a Working Program:Codes and Pseu-docodes 3
1.4 Testing Your Program 11
1.5 Numerical Considerations 12
1.6 Programming Guidelines and Philosophy 14
2 Realistic Projectile Motion 18
2.1 Bicycle Racing:The Effect of Air Resistance 18
2.2 Projectile Motion:The Trajectory of a Cannon Shell 25
2.3 Baseball:Motion of a Batted Ball 31
2.4 Throwing a Baseball:The Effects of Spin 36
2.5 Golf 44
3 Oscillatory Motion and Chaos 48
3.1 Simple Harmonic Motion 48
3.2 Making the Pendulum More Interesting:Adding Dissipation,Non-linearity and a Driving Force 54
3.3 Chaos in the Driven Nonlinear Pendulum 58
3.4 Routes to Chaos:Period Doubling 66
3.5 The Logistic Map:Why the Period Doubles 70
3.6 The Lorenz Model 75
3.7 The Billiard Problem 82
3.8 Behavior in the Frequency Domain:Chaos and Noise 88
4 The Solar System 94
4.1 Kepler's Laws 94
4.2 The Inverse-Square Law and the Stability of Planetary Orbits 101
4.3 Precession of the Perihelion of Mercury 107
4.4 The Three-Body Problem and the Effect of Jupiter on Earth 113
4.5 Resonances in the Solar System:Kirkwood Gaps and Planetary Rings 118
4.6 Chaotic Tumbling of Hyperion 123
5 Potentials and Fields 129
5.1 Electric Potentials and Fields:Laplace's Equation 129
5.2 Potentials and Fields Near Electric Charges 143
5.3 Magnetic Field Produced by a Current 148
5.4 Magnetic Field of a Solenoid:Inside and Out 151
6 Waves 156
6.1 Waves:The Ideal Case 156
6.2 Frequency Spectrum of Waves on a String 165
6.3 Motion of a (Somewhat)Realistic String 169
6.4 Waves on a String(Again):Spectral Methods 174
7 Random Systems 181
7.1 Why Perform Simulations of Random Processes? 181
7.2 Random Walks 183
7.3 Self-Avoiding Walks 188
7.4 Random Walks and Diffusion 195
7.5 Diffusion,Entropy,and the Arrow of Time 201
7.6 Cluster Growth Models 206
7.7 Fractal Dimensionalities of Curves 212
7.8 Percolation 218
7.9 Diffusion on Fractals 229
8 Statistical Mechanics,Phase Transitions,and the Ising Model 235
8.1 The Ising Model and Statistical Mechanics 235
8.2 Mean Field Theory 239
8.3 The Monte Carlo Method 244
8.4 The Ising Model and Second-Order Phase Transitions 246
8.5 First-Order Phase Transitions 259
8.6 Scaling 264
9 Molecular Dynamics 270
9.1 Introduction to the Method:Properties of a Dilute Gas 270
9.2 The Melting Transition 285
9.3 Equipartition and the Fermi-Pasta-Ulam Problem 294
10 Quantum Mechanics 303
10.1 Time-Independent Schr?dinger Equation:Some Preliminaries 303
10.2 One Dimension:Shooting and Matching Methods 307
10.3 A Matrix Approach 323
10.4 A Variational Approach 326
10.5 Time-Dependent Schr?dinger Equation:Direct Solutions 333
10.6 Time-Dependent Schr?dinger Equation in Two Dimensions 345
10.7 Spectral Methods 349
11 Vibrations,Waves,and the Physics of Musical Instruments 357
11.1 Plucking a String:Simulating a Guitar 357
11.2 Striking a String:Pianos and Hammers 362
11.3 Exciting a Vibrating System with Friction:Violins and Bows 367
11.4 Vibrations of a Membrane:Normal Modes and Eigenvalue Problems 372
11.5 Generation of Sound 382
12 Interdisciplinary Topics 389
12.1 Protein Folding 389
12.2 Earthquakes and Self-Organized Criticality 405
12.3 Neural Networks and the Brain 418
12.4 Real Neurons and Action Potentials 436
12.5 Cellular Automata 445
APPENDICES 456
A Ordinary Differential Equations with Initial Values 456
A.1 First-Order,Ordinary Differential Equations 456
A.2 Second-Order,Ordinary Differential Equations 460
A.3 Centered Difference Methods 464
A.4 Summary 467
B Root Finding and Optimization 469
B.1 Root Finding 469
B.2 Direct Optimization 472
B.3 Stochastic Optimization 473
C The Fourier Transform 479
C.1 Theoretical Background 479
C.2 Discrete Fourier Transform 481
C.3 Fast Fourier Transform (FFT) 483
C.4 Examples:Sampling Interval and Number of Data Points 486
C.5 Examples:Aliasing 488
C.6 Power Spectrum 490
D Fitting Data to a Function 493
D.1 Introduction 493
D.2 Method of Least Squares:Linear Regression for Two Variables 494
D.3 Method of Least Squares:More General Cases 497
E Numerical Integration 500
E.1 Motivation 500
E.2 Newton-Cotes Methods:Using Discrete Panels to Approximate an Integral 500
E.3 Gaussian Quadrature:Beyond Classic Methods of Numerical Inte-gration 504
E.4 Monte Carlo Integration 506
F Generation of Random Numbers 512
F.1 Linear Congruential Generators 512
F.2 Nonuniform Random Numbers 516
G Statistical Tests of Hypotheses 520
G.1 Central Limit Theorem and the x2 Distribution 521
G.2 x2 Test of a Hypothesis 523
H Solving Linear Systems 527
H.1 Solving Ax=b,b≠O 528
H.1.1 Gaussian Elimination 528
H.1.2 Gauss-Jordan elimination 530
H.1.3 LU decomposition 531
H.1.4 Relaxational method 533
H.2 Eigenvalues and Eigenfunctions 535
H.2.1 Approximate Solution of Eigensystems 537
Index 541
- 《计算机网络与通信基础》谢雨飞,田启川编著 2019
- 《大学计算机实验指导及习题解答》曹成志,宋长龙 2019
- 《卓有成效的管理者 中英文双语版》(美)彼得·德鲁克许是祥译;那国毅审校 2019
- 《计算机辅助平面设计》吴轶博主编 2019
- 《计算机组成原理解题参考 第7版》张基温 2017
- 《云计算节能与资源调度》彭俊杰主编 2019
- 《新编高中物理竞赛教程习题全解》钟小平主编;钟小平,倪国富,曹海奇编写 2019
- 《数学物理方法与仿真 第3版》杨华军 2020
- 《Helmholtz方程的步进计算方法研究》李鹏著 2019
- 《中学物理奥赛辅导:热学 光学 近代物理学》崔宏滨 2012
- 《中风偏瘫 脑萎缩 痴呆 最新治疗原则与方法》孙作东著 2004
- 《水面舰艇编队作战运筹分析》谭安胜著 2009
- 《王蒙文集 新版 35 评点《红楼梦》 上》王蒙著 2020
- 《TED说话的力量 世界优秀演讲者的口才秘诀》(坦桑)阿卡什·P.卡里亚著 2019
- 《燕堂夜话》蒋忠和著 2019
- 《经久》静水边著 2019
- 《魔法销售台词》(美)埃尔默·惠勒著 2019
- 《微表情密码》(波)卡西亚·韦佐夫斯基,(波)帕特里克·韦佐夫斯基著 2019
- 《看书琐记与作文秘诀》鲁迅著 2019
- 《酒国》莫言著 2019
- 《大学计算机实验指导及习题解答》曹成志,宋长龙 2019
- 《指向核心素养 北京十一学校名师教学设计 英语 七年级 上 配人教版》周志英总主编 2019
- 《大学生心理健康与人生发展》王琳责任编辑;(中国)肖宇 2019
- 《大学英语四级考试全真试题 标准模拟 四级》汪开虎主编 2012
- 《大学英语教学的跨文化交际视角研究与创新发展》许丽云,刘枫,尚利明著 2020
- 《北京生态环境保护》《北京环境保护丛书》编委会编著 2018
- 《复旦大学新闻学院教授学术丛书 新闻实务随想录》刘海贵 2019
- 《大学英语综合教程 1》王佃春,骆敏主编 2015
- 《大学物理简明教程 下 第2版》施卫主编 2020
- 《指向核心素养 北京十一学校名师教学设计 英语 九年级 上 配人教版》周志英总主编 2019