高等数学 上PDF电子书下载
- 电子书积分:11 积分如何计算积分?
- 作 者:陆金铭
- 出 版 社:南京:东南大学出版社
- 出版年份:2017
- ISBN:9787564174118
- 页数:283 页
1 函数的极限与连续 1
1.1 函数 1
1.1.1 变量与常用数集 1
1.1.2 函数的基本概念 2
1.1.3 函数的几种基本性态 7
1.1.4 初等函数 9
习题1.1 16
1.2 数列的极限 17
1.2.1 数列定义 17
1.2.2 数列的极限 17
习题1.2 20
1.3 函数的极限 21
1.3.1 自变量x无限增大时的函数极限 21
1.3.2 自变量x趋于有限值时的函数极限 23
1.3.3 子极限 27
1.3.4 极限不存在的情形 28
1.3.5 极限的性质 30
习题1.3 31
1.4 无穷小量与无穷大量 32
1.4.1 无穷小量 32
1.4.2 无穷大量 35
1.4.3 无穷大量与无穷小量之间的关系 36
习题1.4 36
1.5 极限运算法则 37
1.5.1 极限的四则运算法则 37
1.5.2 复合函数的极限运算法则 43
习题1.5 44
1.6 极限存在准则及两个重要极限 45
1.6.1 准则Ⅰ(夹逼准则) 45
1.6.2 准则Ⅱ(单调有界准则) 48
习题1.6 51
1.7 无穷小量的比较 52
习题1.7 56
1.8 函数的连续性 57
1.8.1 函数连续性的概念 57
1.8.2 函数的间断点 59
1.8.3 连续函数的运算法则 62
1.8.4 初等函数的连续性 64
习题1.8 65
1.9 闭区间上连续函数的性质 66
1.9.1 最大值与最小值存在定理 66
1.9.2 有界性定理 67
1.9.3 零点存在定理与介值定理 68
习题1.9 69
总复习题1 69
2 一元函数微分学 71
2.1 导数的概念 71
2.1.1 导数的概念 71
2.1.2 导数的几何意义 77
2.1.3 函数的可导性与连续性之间的关系 78
习题2.1 79
2.2 导数的运算法则与基本公式 79
2.2.1 求导的四则运算法则 80
2.2.2 反函数与复合函数的求导法则 82
2.2.3 求导的基本公式 84
2.2.4 初等函数的导数 85
习题2.2 87
2.3 高阶导数 88
习题2.3 92
2.4 隐函数与参数方程确定的函数的导数 92
2.4.1 隐函数的导数 93
2.4.2 参数方程确定的函数的导数 95
2.4.3 相关变化率 97
习题2.4 98
2.5 函数的微分及其应用 99
2.5.1 微分的概念 99
2.5.2 微分的几何意义 102
2.5.3 微分的运算法则 102
2.5.4 微分在近似计算中的应用 104
习题2.5 105
总复习题2 105
3 微分中值定理与导数的应用 107
3.1 微分中值定理 107
3.1.1 罗尔定理 107
3.1.2 拉格朗日中值定理 109
3.1.3 柯西中值定理 112
习题3.1 113
3.2 洛必达法则 113
3.2.1 0/0型未定式 114
3.2.2 ∞/∞型未定式 117
3.2.3 其他类型未定式 117
习题3.2 119
3.3 泰勒公式 120
3.3.1 泰勒多项式 120
3.3.2 泰勒中值定理 121
习题3.3 126
3.4 函数的单调性与曲线的凹凸性 126
3.4.1 函数的单调性 126
3.4.2 曲线的凹凸性与拐点 129
习题3.4 132
3.5 函数的极值及最大值与最小值 133
3.5.1 函数的极值 133
3.5.2 函数的最大值与最小值 136
习题3.5 138
3.6 函数图形的描绘 139
3.6.1 曲线的渐近线 139
3.6.2 函数图形的描绘 141
习题3.6 143
3.7 曲率 144
3.7.1 弧微分 144
3.7.2 曲率与曲率半径 146
习题3.7 151
总复习题3 151
4 不定积分 153
4.1 不定积分的概念与性质 153
4.1.1 原函数 153
4.1.2 不定积分 154
4.1.3 基本积分公式 155
4.1.4 不定积分的性质 156
习题4.1 158
4.2 不定积分的换元积分法 158
4.2.1 第一类换元积分法 159
4.2.2 第二类换元积分法 163
习题4.2 168
4.3 不定积分的分部积分法 169
习题4.3 173
4.4 有理函数和可化为有理函数的积分 173
4.4.1 有理函数的积分 173
4.4.2 三角有理函数的积分 177
习题4.4 178
4.5 积分表的使用 179
4.5.1 能直接从积分表中查找到的类型 179
4.5.2 需要先进行转换,再查表的类型 179
习题4.5 180
总复习题4 180
5 定积分 182
5.1 定积分的概念与性质 182
5.1.1 引例 182
5.1.2 定积分的概念 184
5.1.3 定积分的几何意义 185
5.1.4 定积分的性质 186
习题5.1 190
5.2 微积分基本定理 191
5.2.1 变上限积分函数及其导数 191
5.2.2 牛顿-莱布尼茨公式 192
习题5.2 195
5.3 定积分的换元积分法与分部积分法 196
5.3.1 定积分的换元积分法 196
5.3.2 定积分的分部积分法 200
习题5.3 202
5.4 反常积分 203
5.4.1 无穷区间上的反常积分 203
5.4.2 无界函数的反常积分 205
习题5.4 206
总复习题5 207
6 定积分的应用 209
6.1 定积分的元素法 209
6.2 定积分在几何上的应用 210
6.2.1 平面图形的面积 210
6.2.2 立体图形的体积 214
6.2.3 平面曲线的弧长 216
习题6.2 218
6.3 定积分在物理上的应用 220
6.3.1 变力沿直线做功 220
6.3.2 侧压力 221
6.3.3 引力 222
习题6.3 223
总复习题6 223
参考答案 225
附录Ⅰ 预备知识 234
附录Ⅱ 一些常用的中学数学公式 242
附录Ⅲ 几种常用的曲线(a>0) 244
附录Ⅳ 基本积分表 247
附录Ⅴ MATLAB软件简介(上) 258
参考文献 283
- 《MBA大师.2020年MBAMPAMPAcc管理类联考专用辅导教材 数学考点精讲》(中国)董璞 2019
- 《2013数学奥林匹克试题集锦 走向IMO》2013年IMO中国国家集训队教练组编 2013
- 《一个数学家的辩白》(英)哈代(G.H.Hardy)著;李文林,戴宗铎,高嵘译 2019
- 《高等数学试题与详解》西安电子科技大学高等数学教学团队 2019
- 《数学物理方法与仿真 第3版》杨华军 2020
- 《高等数学 上》东华大学应用数学系编 2019
- 《聋校义务教育实验教科书教师教学用书 数学 一年级 上》人民教育出版社,课程教材研究所,小学数学课程教材研究中心编著 2017
- 《离散数学》(中国)杨文国,高华,石莹 2019
- 《指向核心素养 北京十一学校名师教学设计 数学 九年级 上 配人教版》周志英总主编 2019
- 《2018考研数学 数学 1 15年真题详解及解题技巧》本书编委会著 2017
- 《中国生态城市建设发展报告》王伟光张广智陆大道李景源顾问;刘举科孙伟平胡文臻主编;曾刚高天鹏常国华钱国权副主编 2019
- 《周秦哲学史》陆懋德著 2019
- 《急性缺血性脑卒中》(韩)朴宰基编者;杨莉责编陆丹,张大伟译者 2019
- 《中国企业管理理论创新研究》陆亚东,孙金云,武亚军 2019
- 《中国文学经典 古代散文卷》范耀华责任编辑;(中国)陈引驰,周兴陆 2019
- 《神州风光速写》陆本瑞绘 1998
- 《社会科学基础知识》陆向荣主编 2018
- 《贵州省 罗甸县志》陆国器主编 1994
- 《PHOTOSHOP CC平面设计经典实例教程=PHOTOSHOP CC GRAPHIC DESIGN CLASSIC EXAMPLE TUTORIAL》陆丽芳主编 2020
- 《啼笑因缘弹词续集 上册》吴县陆澹盦著